A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

J Healthc Eng

Department of Electronics and Communication Engineering, Bannariamman Institute of Technology, Sathyamangalam 638 401, India Sri Krishna College of Technology, Coimbatore, 641 042.

Published: May 2014

In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

Download full-text PDF

Source
http://dx.doi.org/10.1260/2040-2295.5.1.95DOI Listing

Publication Analysis

Top Keywords

smart routing
8
routing protocol
8
medical wireless
8
min-max battery
8
battery cost
8
cost routing
8
routing
6
novel smart
4
protocol remote
4
remote health
4

Similar Publications

Efficient traffic management solutions in 6G communication systems face challenges as the scale of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile ad-hoc pieces of fire networking sensors adapt to ambient changes.

View Article and Find Full Text PDF

This paper examines the impact of hetterogeneous wireless sensor networks (WSNs) on wireless communication systems, with a focus in Internet of Things (IoT) enabled smart grids. It introduces a novel approach for the fair distribution of energy and computational resources among sensor nodes (SNs), which is crucial for extending network lifespan, enhancing performance, and ensuring SG stability. The research highlights the role of initial energy and processing capacities of SNs.

View Article and Find Full Text PDF

BRA-YOLOv7: improvements on large leaf disease object detection using FasterNet and dual-level routing attention in YOLOv7.

Front Plant Sci

December 2024

The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.

Tea leaf diseases are significant causes of reduced quality and yield in tea production. In the Yunnan region, where the climate is suitable for tea cultivation, tea leaf diseases are small, scattered, and vary in scale, making their detection challenging due to complex backgrounds and issues such as occlusion, overlap, and lighting variations. Existing object detection models often struggle to achieve high accuracy in detecting tea leaf diseases.

View Article and Find Full Text PDF

Inverse design of compact nonvolatile reconfigurable silicon photonic devices with phase-change materials.

Nanophotonics

May 2024

The State Key Lab of Brain-Machine Intelligence, Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

In the development of silicon photonics, the continued downsizing of photonic integrated circuits will further increase the integration density, which augments the functionality of photonic chips. Compared with the traditional design method, inverse design presents a novel approach for achieving compact photonic devices. However, achieving compact, reconfigurable photonic devices with the inverse design that employs the traditional modulation method exemplified by the thermo-optic effect poses a significant challenge due to the weak modulation capability.

View Article and Find Full Text PDF

Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small-sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish-Finder. First, we engendered a structure titled "C2fBF," utilizing the dual-path routing attention protocol of BiFormer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!