A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of a competitor on the foraging behaviour of the shore crab Carcinus maenas. | LitMetric

The effects of a competitor on the foraging behaviour of the shore crab Carcinus maenas.

PLoS One

Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, Devon, United Kingdom.

Published: June 2015

Optimal Diet Theory suggests that individuals make foraging decisions that maximise net energy intake. Many studies provide qualitative support for this, but factors such as digestive constraints, learning, predation-risk and competition can influence foraging behaviour and lead to departures from quantitative predictions. We examined the effects of intraspecific competition within a classic model of optimal diet--the common shore crab, Carcinus maenas, feeding on the mussel, Mytilus edulis. Unexpectedly, we found that breaking time (Tb), eating time (Te), and handling time (Th) all decreased significantly in the presence of a conspecific. Reduced handling time in the presence of a competitor resulted in an increased rate of energy intake, raising the question of why crabs do not always feed in such a way. We suggest that the costs of decreased shell breaking time may be increased risk of claw damage and that crabs may be trading-off the potential loss of food to a competitor with the potential to damage their claw whilst breaking the shell more rapidly. It is well documented that prey-size selection by crabs is influenced by both the risk of claw damage and competition. However, our results are the first to demonstrate similar effects on prey handling times. We suggest that crabs maximise their long-term rate of energy intake at a scale far greater than individual foraging events and that in order to minimise claw damage, they typically break shells at a rate below their maximum. In the presence of a competitor, crabs appear to become more risk-prone and handle their food more rapidly, minimising the risk of kleptoparasitism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972140PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093546PLOS

Publication Analysis

Top Keywords

energy intake
12
claw damage
12
foraging behaviour
8
shore crab
8
crab carcinus
8
carcinus maenas
8
breaking time
8
handling time
8
presence competitor
8
rate energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!