A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Nitric Oxide Bioavailability via Exogen Nitric Oxide Synthase and L-Arginine Attenuates Ischemia-Reperfusion-Induced Microcirculatory Alterations. | LitMetric

Enhancing Nitric Oxide Bioavailability via Exogen Nitric Oxide Synthase and L-Arginine Attenuates Ischemia-Reperfusion-Induced Microcirculatory Alterations.

Ann Plast Surg

From the Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic and Hand Surgery, University of Heidelberg, Ludwig-Guttmannstr, Ludwigshafen, Germany.

Published: October 2017

Background: Nitric oxide (NO) is an important cytoprotective agent against ischemia and reperfusion injury (IRI). Enhancing NO bioavailability via exogen NO synthases (NOSs) and L-arginine promotes conversation to NO, circumventing the problem of nonfunctioning NOSs under hypoxic and acidic conditions. In this study, the authors evaluated the therapeutic efficacy of endothelial, inducible and neuronal NOS, and L-arginine on reperfusion-induced microcirculatory alterations and hemodynamic adverse effects in the microvasculature of skeletal muscle.

Methods: Vascular pedicle isolated rat cremaster model was used that underwent 2 hours of warm ischemia followed by 1 hour of reperfusion. At 30 minutes before ischemia, normal saline (control group with/without ischemia), endothelial-, inducible-, and neuronal NOSs (2 IE) and L-arginine (50 mg/kg BW) were administered systemically (IV). Ischemia-reperfusion-induced microcirculatory alterations were measured after 1 hour of reperfusion. Mean arterial blood pressure and heart frequency were measured throughout the experiment to determine hemodynamic adverse effects.

Results: The isoforms of NOSs and L-arginine attenuated ischemia-reperfusion-induced vasoconstriction, improved red blood cell velocity, capillary flow, and leukocyte adherence to the endothelium wall. Hemodynamics was stable throughout the experiment.

Conclusions: Enhancing NO bioavailability via exogen application of NOSs and L-arginine significantly attenuated ischemia-reperfusion-induced microcirculatory alterations in the microvasculature of skeletal muscle. Significant hemodynamic adverse effects were not present, thus demonstrating this approach might be useful for therapeutic intervention. This "pharmacologic preconditioning" could be an easy and effective interventional strategy to uphold conversation of L-arginine to NO under ischemic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000000148DOI Listing

Publication Analysis

Top Keywords

microcirculatory alterations
16
noss l-arginine
16
nitric oxide
12
bioavailability exogen
12
ischemia-reperfusion-induced microcirculatory
12
hemodynamic adverse
12
enhancing bioavailability
8
adverse effects
8
microvasculature skeletal
8
hour reperfusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!