TERT promoter mutations in skin cancer: the effects of sun exposure and X-irradiation.

J Invest Dermatol

Department of Cancer Biology, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal. Electronic address:

Published: August 2014

The reactivation or reexpression of telomerase (TERT) is a widespread feature of neoplasms. TERT promoter mutations were recently reported that were hypothesized to result from UV radiation. In this retrospective study, we assessed TERT promoter mutations in 196 cutaneous basal cell carcinomas (BCCs), including 102 tumors from X-irradiated patients, 94 tumors from patients never exposed to ionizing radiation treatment, and 116 melanomas. We sought to evaluate the effects of UV and X-ray irradiation on TERT mutation frequency. TERT mutations were detected in 27% of BCCs from X-irradiated patients, 51% of BCCs from nonirradiated patients, and 22% of melanoma patients. TERT mutations were significantly increased in non-X-irradiated BCC patients compared with X-irradiated BCC patients; the mutations also presented a different mutation signature. In nonirradiated patients, TERT mutations were more frequent in BCCs of sun-exposed skin, supporting a possible causative role of UV radiation. In melanoma, TERT promoter mutations were generally restricted to intermittent sun-exposed areas and were associated with nodular and superficial spreading subtypes, increased thickness, ulceration, increased mitotic rate, and BRAFV600E mutations. Our results suggest that various carcinogenic factors may cause distinct TERT promoter mutations in BCC and that TERT promoter mutations might be associated with a poorer prognosis in melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2014.163DOI Listing

Publication Analysis

Top Keywords

tert promoter
24
promoter mutations
24
tert mutations
12
tert
11
mutations
11
patients
8
x-irradiated patients
8
nonirradiated patients
8
patients tert
8
bcc patients
8

Similar Publications

The term verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN) was coined to describe HPV-independent p53-wildtype lesions with characteristic clinicopathologic characteristics and association with vulvar squamous cell carcinoma (vSCC). We aimed to expand on the molecular landscape of vaVIN using comprehensive sequencing and copy number variation profiling. vaVIN diagnosis in institutional cases was confirmed by a second review, plus negative p16 and wildtype p53 by immunohistochemistry.

View Article and Find Full Text PDF

Background: Meningioma represents the most common intracranial tumor in adults. However, it is rare in pediatric patients. We aimed to demonstrate the clinicopathological characteristics and long-term outcome of pediatric meningiomas (PMs).

View Article and Find Full Text PDF

This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.

View Article and Find Full Text PDF

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!