Obesity is a multifactorial disease, with epigenetic alterations. Have been described modifications in the expression of some microRNAs, and some proteins related to obesity. The objective was to determine and correlate, in obese patients, the gene expression of LEP, LEPR, IGF1, IL10 and of miR-27a, miR-27b, miR-143 and miR-145. RNA was extracted from biopsies of subcutaneous fat, liver and visceral fat of 15 obese subjects submitted to bariatric surgery and of 15 non-obese subjects submitted to cholecystectomy for cDNA synthesis and for RT-PCR. The microRNAs were chosen using the TargetScan software. An increased expression of LEP and IGF1 was detected in the subcutaneous fat of the obese group compared to control, while the expression of IGF1 was higher in the control group than in the obese one. MiRNA-27a had a higher expression in the omentum of the obese patients and there was also a correlation in the expression of miRNA-145 and LEPR in the omentum of this group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972109 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093512 | PLOS |
Cells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
Objective: The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders.
Methods: In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects.
Front Clin Diabetes Healthc
December 2024
Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States.
Introduction: Infants of diabetic mothers (IDMs) may exhibit decreased oral intake, requiring nasogastric feedings and prolonged hospitalization. The objective of this study was to explore whether saliva serves as an informative biofluid for detecting expression of hunger signaling and energy homeostasis modulator genes and to perform exploratory analyses examining expression profiles, body composition, and feeding outcomes in late preterm and term IDMs and infants born to mothers with normoglycemia during pregnancy.
Methods: In this prospective cohort pilot study, infants born at ≥ 35 weeks' gestation to mothers with gestational or type II diabetes (IDM cohort) and normoglycemic mothers (control cohort) were recruited.
Genomics
January 2025
School of Life Sciences, Nantong University, Nantong 226019, China. Electronic address:
Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!