Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment.

PLoS One

Department of Pharmacology and Cardiovascular Research Center, Rush Medical College, Rush University, Chicago, Illinois, United States of America.

Published: December 2015

Under myocardial microenvironment, bone marrow-derived mesenchymal stem cells (MSCs) can transdifferentiate into cardiomyocytes (CMs). However, the role of histone deacetylase 1 (HDAC1) in this directed differentiation process remains unclear. The current study is to determine the acetylation regulatory mechanisms that may be involved in the directed CM differentiation from MSCs. MSCs isolated from male Sprague-Dawley (SD) rats were marked with Ad-EGFP and co-cultured with CMs. Flow cytometry was used to sort EGFP-positive (EGFP+) MSCs from the co-culture system. Then, the expression of cardiac troponin T (cTnT) in these MSCs was detected by immunofluorescence assay. In addition, HDAC1 levels at different co-culture times were measured by quantitative real-time polymerase chain reaction (QT-PCR) and Western blotting. At 4 days after co-culture with CMs, the MSCs began to expression detectable levels of cTnT. The expression of HDAC1 in CMs was much lower than that in MSCs. After co-culture with CMs, the expression of HDAC1 in MSCs was significantly decreased in a time dependent manner. In addition, our recent study has also identified that knockdown of the HDAC1 could promote the directed differentiation of MSCs into CMs. The results suggest that HDAC1 has a negative correlation with cardiac cell differentiation from MSCs under a myocardial microenvironment. HDAC1 might play an important role in the directed differentiation of MSCs into CMs in heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972222PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093222PLOS

Publication Analysis

Top Keywords

directed differentiation
16
differentiation mscs
16
myocardial microenvironment
12
mscs
11
mesenchymal stem
8
stem cells
8
mscs co-culture
8
co-culture cms
8
expression hdac1
8
mscs cms
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

This study explored the structural relationships among family of origin health, self-differentiation, mentalization, and marital satisfaction, focusing on indirect effects and gender differences. Data from 400 married Korean adults aged 30-49 were analyzed using structural equation modeling and multigroup analysis. Results revealed that all paths were significant except the direct impact of family-of-origin health on marital satisfaction.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress.

Environ Pollut

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:

This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!