Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972239PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093508PLOS

Publication Analysis

Top Keywords

airway smooth
12
smooth muscle
12
rat airway
8
muscle cells
8
activation akt
8
nicotine
6
pro-proliferative effects
4
effects nicotine
4
nicotine underlying
4
underlying mechanism
4

Similar Publications

Study of the effect of azithromycin on airway remodeling in asthma via the SAPK/JNK pathway.

J Cardiothorac Surg

December 2024

Department of Internal Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, China, 310009.

Objective: Asthma is a prevalent status attributing to lower respiratory tract chronic inflammation. Azithromycin (AZM) is known to be effective against asthma. Thus, this study delved into the mechanism of AZM repressing airway remodeling (AR) via the SAPK/JNK pathway in asthma.

View Article and Find Full Text PDF

Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats.

Neurochem Int

December 2024

Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970. Electronic address:

Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are involved in the biological regulation of asthma and allergies.

Objectives: To investigate the association between cord blood miRNAs and the development of allergic rhinitis and early childhood asthma.

Methods: miRNAs were sequenced from cord blood of subjects participating in the Vitamin D Antenatal Asthma Reduction Trial.

View Article and Find Full Text PDF

Recent studies indicate that oxidative/nitrosative stress is involved in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, and urticaria. The article aimed to review the latest literature on disruptions in redox homeostasis and protein glycation in allergy patients. It has been shown that enzymatic and non-enzymatic antioxidant systems are impaired in allergic conditions, which increases cell susceptibility to oxidative damage.

View Article and Find Full Text PDF

Regional brain iron mapping in obstructive sleep apnea adults.

Sleep Med

December 2024

Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA. Electronic address:

Purpose: Obstructive sleep apnea (OSA) subjects show significant white matter injury, including myelin changes in several brain areas, potentially from impaired glial cells, contributing to increased iron levels that escalate neurodegeneration, but brain iron loads are unclear. Our aim was to examine regional brain iron load, using T2∗-relaxometry, in OSA adults before and after continuous positive airway pressure (CPAP) treatment over controls.

Methods: We performed T2∗-weighted imaging using a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!