Waveguides were inscribed into a 9.5 mm long periodically poled KTiOPO4 crystal with a Ti:sapphire femtosecond-laser. Waveguiding was achieved between two parallel written tracks with spacings of 17-19 μm. The fundamental power of 1.6 W for frequency doubling in the waveguide was delivered by a continuous wave Ti:sapphire laser at a wavelength of 943.18 nm. A maximum output power of 76 mW in the blue spectral region was achieved. This corresponds to a single pass normalized conversion efficiency of 4.6%  W(-1) cm(-2).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.39.001274DOI Listing

Publication Analysis

Top Keywords

continuous wave
8
periodically poled
8
highly efficient
4
efficient continuous
4
wave blue
4
blue second-harmonic
4
second-harmonic generation
4
generation fs-laser
4
fs-laser written
4
written periodically
4

Similar Publications

Background: The vascular and cardiometabolic effects of pecans are relatively under-studied.

Objectives: The aim was to examine how substitution of usual snack foods with 57 g/day of pecans affects vascular health, risk factors for cardiometabolic diseases and diet quality, compared to continuing usual intake in individuals at risk for cardiometabolic diseases.

Methods: A 12-week single-blinded, parallel, randomized controlled trial was conducted.

View Article and Find Full Text PDF

Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs.

Sci Adv

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.

View Article and Find Full Text PDF

Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities.

View Article and Find Full Text PDF

Purpose: To compare the effect on sexual function of ejaculation-sparing enucleation of the prostate using Thulium: YAG laser (ES-ThuLEP) versus continuous-wave Thulium Fiber Laser (ES-ThuFLEP).

Methods: 112 patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia who wished to preserve ejaculation were treated. 58 patients underwent ES-ThuLEP (Group A) using the Cyber TM generator.

View Article and Find Full Text PDF

Introduction: Extracorporeal shock wave lithotripsy (ESWL) causes trauma to the renal parenchyma. Due to the kidney injury, free radicals are generated, and an inflammatory process develops. Inflammatory markers like interleukin's (IL), C-reactive protein (CRP), and procalcitonin (PCT) are released into the circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!