Background: Mycobacterium bovis bacillus Calmette-Guérin (BCG) is known to be only partially effective in inhibiting M. tuberculosis (MTB) multiplication in human. A new recombinant (r) urease-deficient BCG (BCG-dHCM) that secretes protein composed of heat shock protein (HSP)70, MTB-derived CysO and major membrane protein (MMP)-II was produced for the efficient production of interferon gamma (IFN-γ) which is an essential element for mycobacteriocidal action and inhibition of neutrophil accumulation in lungs.
Methods: Human monocyte-derived dendritic cells (DC) and macrophages were differentiated from human monocytes, infected with BCG and autologous T cells-stimulating activity of different constructs of BCG was assessed. C57BL/6 mice were used to test the effectiveness of BCG for the production of T cells responsive to MTB-derived antigens (Ags).
Results: BCG-dHCM intracellularly secreted HSP70-CysO-MMP-II fusion protein, and activated DC by up-regulating Major Histcompatibility Complex (MHC), CD86 and CD83 molecules and enhanced various cytokines production from DC and macrophages. BCG-dHCM activated naïve T cells of both CD4 and CD8 subsets through DC, and memory type CD4+ T cells through macrophages in a manner dependent on MHC and CD86 molecules. These T cell activations were inhibited by the pre-treatment of Ag-presenting cells (APCs) with chloroquine. The single and primary BCG-dHCM-inoculation produced long lasting T cells responsive to in vitro secondarily stimulation with HSP70, CysO, MMP-II and H37Rv-derived cytosolic protein, and partially inhibited the replication of aerosol-challenged MTB.
Conclusions: The results indicate that introduction of different type of immunogenic molecules into a urease-deficient rBCG is useful for providing polyclonal T cell activating ability to BCG and for production of T cells responsive to secondary stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011778 | PMC |
http://dx.doi.org/10.1186/1471-2334-14-179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!