Structural and computational studies to explore the WAT1 binding pocket in the structure-based design of inhibitors against the type II dehydroquinase (DHQ2) enzyme are reported. The crystal structures of DHQ2 from M. tuberculosis in complex with four of the reported compounds are described. The electrostatic interaction observed between the guanidinium group of the essential arginine and the carboxylate group of one of the inhibitors in the reported crystal structures supports the recently suggested role of this arginine as the residue that triggers the release of the product from the active site. The results of the structural and molecular dynamics simulation studies revealed that the inhibitory potency is favored by promoting interactions with WAT1 and the residues located within this pocket and, more importantly, by avoiding situations where the ligands occupy the WAT1 binding pocket. The new insights can be used to advantage in the structure-based design of inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm500175z | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.
View Article and Find Full Text PDFBiophys Physicobiol
September 2024
Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
Computerized molecular docking methodologies are pivotal in screening, a crucial facet of modern drug design. ChooseLD, a docking simulation software, combines structure- and ligand-based drug design methods with empirical scoring. Despite advancements in computerized molecular docking methodologies, there remains a gap in optimizing the predictive capabilities of docking simulation software.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Physics, Xidian University, Xi'an 710071, China.
Existing tunable optical metasurfaces based on the electro-optic effect are either complex in structure or have a limited phase modulation range. In this paper, a simple rectangular metasurface structure based on a Pb(MgNb)O-PbTiO (PMN-PT) crystal with high electro-optic coefficient of 120 pm/V was designed to demonstrate its electrically tunable performance in the optical communication band through simulations. By optimizing the structure parameters, a tunable metasurface was generated that can induce a complete 2π phase shift for beam deflection while maintaining relatively uniform transmittance.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!