A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of eastern oysters (Crassostrea virginica) on sediment carbon and nitrogen dynamics in an urban estuary. | LitMetric

Oyster reefs have declined globally. Interest in their restoration has motivated research into oyster-mediated ecosystem services including effects on biodiversity, filtration, and nitrogen (N) cycling. Recent evidence suggests oysters may promote denitrification, or anaerobic respiration of nitrate (NO3-) into di-nitrogen gas, via benthic deposition of carbon (C) and N-rich biodeposits. However, the mechanisms whereby biodeposits promote N transformations prerequisite to denitrification (e.g., mineralization and nitrification) are unclear. Previous research has also not measured oysters' influence on N cycling in urbanized areas. In May 2010 we deployed eastern oysters (Crassostrea virginica) in mesh cages above sand-filled boxes at four sites across a nutrient gradient in Jamaica Bay, New York City (New York, USA). Oysters were arranged at four densities: 0, 40, 85, and 150 oysters/m2. For 17 months we measured water-column nutrients and chlorophyll a, every two weeks to monthly. Every two months we measured sediment ash-free dry mass (AFDM), exchangeable ammonium (NH4+), ammonification, nitrification, denitrification potential (DNP), and NO3- and C limitation of DNP. Oysters increased sediment AFDM at three of four sites, with the greatest increase at high density. Oysters did not affect any N pools or transformations. However, variation among sites and dates illustrated environmental drivers of C and N biogeochemistry in this urban estuary. Overall, nitrification was positively related to net ammonification, water column NH4+, and sediment NH4+, but was not correlated with DNP. Denitrification was consistently and strongly NO3- limited, while C was not limiting or secondarily limiting. Therefore, the oyster-mediated increase in AFDM did not affect DNP because C was not its primary driver. Also, because DNP was unrelated to nitrification, it is unlikely that biodeposit N was converted to NO3- for use as a denitrification substrate. Predicting times or sites where denitrification is driven by the C and N species originating from oyster biodeposits remains a challenge under eutrophic conditions. Towards this goal, we synthesized our conclusions with literature predictions in a conceptual model for pathways whereby oysters might influence C and N dynamics differently in oligotrophic relative to eutrophic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1890/12-1798.1DOI Listing

Publication Analysis

Top Keywords

eastern oysters
8
oysters crassostrea
8
crassostrea virginica
8
urban estuary
8
months measured
8
oysters
6
denitrification
6
dnp
5
sediment
4
virginica sediment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!