The chicken anemia virus (CAV), is a known member of the genus Gyrovirus and was first isolated from chickens in Japan in 1979. Some reports have also demonstrated that CAV can be identified in human stool specimens. In this study, a variant of CAV was detected using PCR with CAV-based primers in fecal samples of stray cats. The genome of CAV variant was sequenced and the results suggest that it could be a recombinant viral strain from parental CAV strains JQ690762 and AF311900. Recombination is an important evolutionary mechanism that contributes to genetic diversification. These findings indicate that CAV variant might have originated from CAV-infected chickens. The epidemiology and pathogenesis of this novel virus remains to be elucidated. This study underscores the importance of CAV surveillance and it presents the first evidence suggesting the possibility of CAV homologous recombination in cat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943257 | PMC |
http://dx.doi.org/10.1155/2014/313252 | DOI Listing |
Vet Parasitol Reg Stud Reports
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Elbehera, Egypt.
Ascaridia galli causes weight loss, emaciation, anemia, decreased egg production, and sometimes, intestinal obstruction and death in birds, leading to economic losses in the poultry industry. This research aimed to record the occurrence of A. galli in free-range chickens at farmers' houses in three villages in Ashmoun City, Minoufiya Governorate, Egypt.
View Article and Find Full Text PDFFront Microbiol
January 2025
Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector.
View Article and Find Full Text PDFAvian Pathol
January 2025
Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
infections can be experimentally reproduced after oral inoculation. Co-infections of with other avian pathogens might increase the proportion of broilers with infections. The aim of the study was to examine via which infection route is capable of causing infections and which co-infections exacerbate infections.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa.
Smallholder farmers in most of the rural areas in African countries rear non-descript village chickens for petty cash, food provision and for performing rituals. Village chicken production systems are regarded as low input- low output because the chickens receive minimum care and produce average to less eggs and meat. The chickens receive minimal biosecurity and are often left to scavenge for feed and thus exposes them to potential vector parasites that can transmit parasites such as haemoparasites.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
Viral co-infections pose significant challenges, causing substantial economic losses worldwide in the poultry industry. Among these, avian lLeukosis virus subgroup J (ALV-J) and chicken infectious anemia virus (CIAV) are particularly concerning, as they frequently lead to co-infections in chickens, further compromising their immune defenses, increasing susceptibility to secondary infections and diminishing vaccine efficacy. While our previous studies have examined the pathogenicity and immunosuppressive effects of these co-infections in vitro and in vivo, the key genes and molecular pathways involved remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!