NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5) gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs) are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT) and hypertensive subjects (HT). We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6-14/group). Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA), effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (-45.1±3.2% vs. mock-siRNA, n=6-8) in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (-32.5±1.8%) than HT (-14.8±1.8). In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969603PMC
http://dx.doi.org/10.1016/j.redox.2014.01.020DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
12
renal proximal
8
cells nadph
8
nox5 protein
8
nox5
7
unique role
4
nadph
4
role nadph
4
oxidase oxidative
4
oxidative stress
4

Similar Publications

Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases.

Front Pharmacol

January 2025

Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions.

View Article and Find Full Text PDF

Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.

View Article and Find Full Text PDF

The unique redox properties of nanoscale cerium dioxide determine its diverse application in biology and medicine as a regulator of oxidative metabolism. Lipid modifiers of the nanoparticle surface change their biochemical properties and bioavailability. Complexes with lipids can be formed upon contact of the nanoparticles with the membrane.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by lipid accumulation in the liver due to an excess in their supplies or an impairment in their management. While some patients remain stable for years, a proportion of them progress up to steatohepatitis (MASH). MASLD links with systemic pathways being associated with metabolic and non-metabolic diseases.

View Article and Find Full Text PDF

Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron HO signalling cascade in Drosophila that is essential for long-term memory formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!