Astaxanthin, a xanthophyll carotenoid, accelerates lipid utilization during aerobic exercise, although the underlying mechanism is unclear. The present study investigated the effect of astaxanthin intake on lipid metabolism associated with peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in mice. Mice were divided into 4 groups: sedentary, sedentary and astaxanthin-treated, exercised, and exercised and astaxanthin-treated. After 2 weeks of treatment, the exercise groups performed treadmill running at 25 m/min for 30 min. Immediately after running, intermuscular pH was measured in hind limb muscles, and blood was collected for measurements. Proteins were extracted from the muscle samples and PGC-1α and its downstream proteins were measured by western blotting. Levels of plasma fatty acids were significantly decreased after exercise in the astaxanthin-fed mice compared with those fed a normal diet. Intermuscular pH was significantly decreased by exercise, and this decrease was inhibited by intake of astaxanthin. Levels of PGC-1α and its downstream proteins were significantly elevated in astaxanthin-fed mice compared with mice fed a normal diet. Astaxanthin intake resulted in a PGC-1α elevation in skeletal muscle, which can lead to acceleration of lipid utilization through activation of mitochondrial aerobic metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947967 | PMC |
http://dx.doi.org/10.3164/jcbn.13-110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!