DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-13-0849DOI Listing

Publication Analysis

Top Keywords

cdk9 inhibitor
8
cell lines
8
leukemia
5
novel cdk9
4
inhibitor potent
4
potent antitumor
4
antitumor efficacy
4
efficacy preclinical
4
preclinical hematologic
4
tumor
4

Similar Publications

Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.

View Article and Find Full Text PDF

Identification of mitoxantrone as a potent inhibitor of CDK7/Cyclin H via structure-based virtual screening and In-Vitro validation by ADP-Glo kinase assay.

Bioorg Chem

December 2024

Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Cyclin-dependent kinases, CDK7 and CDK9 play critical roles in cancer by regulating transcriptional processes essential for cell proliferation and survival. Their dysregulation leads to aberrant gene expression, promoting oncogenic pathways and contributing to tumor growth and progression. This study aimed to identify a new chemotype for CDK7/9 inhibitors using a structure-based virtual screening approach.

View Article and Find Full Text PDF

CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of -(substituted thiazol-2-yl)--(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound significantly inhibited CDK2 (IC = 0.

View Article and Find Full Text PDF

We tested newly synthesized compounds 1-13 on 59 cancer cell lines and found that acylhydrazones 5, 6, 7, 9, and 12 showed the best cytotoxic activity. They stopped the mean growth percentage (MG%) by an average of 23.5, 55.

View Article and Find Full Text PDF

The anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) contributes to the pathophysiology of acute myeloid leukemia (AML) and certain B-cell malignancies. Tumor dependence on Mcl-1 is associated with resistance to venetoclax. Voruciclib, an oral cyclin-dependent kinase (CDK) inhibitor targeting CDK9, indirectly decreases Mcl-1 protein expression and synergizes with venetoclax in preclinical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!