An Escherichia coli arsRp::luc-based biosensor was constructed to measure the bioavailability of arsenic (As) in soil. In previous induction experiments, it produced a linear response (R (2) = 0.96, P < 0.01) to As from 0.05 to 5 μmol/L after a 2-h incubation. Then, both chemical sequential extraction, Community Bureau of Reference recommended sequential extraction procedures (BCR-SEPs) and E. coli biosensor, were employed to assess the impact of different long-term fertilization regimes containing N, NP, NPK, M (manure), and NPK + M treatments on the bioavailability of arsenic (As) in soil. Per the BCR-SEPs analysis, the application of M and M + NPK led to a significant (P < 0.01) increase of exchangeable As (2-7 times and 2-5 times, respectively) and reducible As (1.5-2.5 times and 1.5-2.3 times, respectively) compared with the no fertilization treated soil (CK). In addition, direct contact assay of E. coli biosensor with soil particles also supported that bioavailable As in manure-fertilized (M and M + NPK) soil was significantly higher (P < 0.01) than that in CK soil (7 and 9 times, respectively). Organic carbon may be the major factor governing the increase of bioavailable As. More significantly, E. coli biosensor-determined As was only 18.46-85.17 % of exchangeable As and 20.68-90.1 % of reducible As based on BCR-SEPs. In conclusion, NKP fertilization was recommended as a more suitable regime in As-polluted soil especially with high As concentration, and this E. coli arsRp::luc-based biosensor was a more realistic approach in assessing the bioavailability of As in soil since it would not overrate the risk of As to the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-5656-0DOI Listing

Publication Analysis

Top Keywords

bioavailability arsenic
8
arsenic soil
8
escherichia coli
8
coli arsrpluc-based
8
arsrpluc-based biosensor
8
impacts long-term
4
long-term fertilization
4
fertilization regimes
4
regimes bioavailability
4
soil integrating
4

Similar Publications

Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.

View Article and Find Full Text PDF

The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.

View Article and Find Full Text PDF

Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.

View Article and Find Full Text PDF

[Characteristics and Comprehensive Quality Assessment of Heavy Metals in Soil-crop System of High Geological Background Area].

Huan Jing Ke Xue

January 2025

Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.

Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.

View Article and Find Full Text PDF

Exploration of the bio-availability and the risk thresholds of cadmium and arsenic in contaminated paddy soils.

Heliyon

December 2024

The Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, The Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.

Cadmium (Cd) and arsenic (As) contamination risk in paddy soils has raised global concern. In order to scientifically and objectively evaluate the bioavailability of soil Cd, As and the risk of Cd or As threshold in contaminated farmland, this study was conducted to investigate different types of extractants for their potential extraction efficiency of Cd and As. Soils from two different parent materials in Hunan, Yueyang and Yiyang, typical double-cropping rice production areas in the south of China, were used as test soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!