Yeasts associated with plums and their potential for controlling brown rot after harvest.

Yeast

Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV, USA.

Published: June 2014

Bacterial and yeast antagonists isolated from fruit surfaces have been effective in controlling various post-harvest diseases, and several microbial antagonists have been developed into commercial products. Our knowledge of the fruit microbial community, with the exception of grapes, apples and some citrus fruit, is rudimentary and the potential of the resident yeasts for biocontrol remains largely unknown. We determined the occurrence of yeasts on plum surfaces during fruit development from the pre-hardening stage until harvest for 2 years. A total of 16 species from 13 genera were isolated. Species from three genera, basidiomycetes Rhodotorula (29.5%) and Sporidiobolus (24.7%) and the dimorphic ascomycete genus Aureobasidium (24.7%), constituted 78.7% of all isolations and were recovered throughout fruit development, while Cryptococcus spp. constituted only 6.2% of the total plum isolates. The yeast community in the final sampling was significantly different from the first three samplings, reflecting a rapidly changing fruit habitat during the maturation of fruit. For example, Hanseniaspora, Pichia, Zygosaccharomyces and Wickerhamomyces occurred only on the most mature fruit. Screening of the yeasts for antagonistic activity against Monilinia fructicola, a fungus that causes brown rot, revealed a range of biocontrol activities. Several isolates provided complete control of the decay on plums, challenged with a pathogen suspension of 10(3) conidia/ml and > 90% of control on fruit inoculated with the pathogen at a concentration 10 times higher. Some of the best antagonists included A. pullulans and R. phylloplana. Populations of both of these antagonists increased rapidly by several orders of magnitude in wounds of plums incubated at 24ºC and 4ºC. Our results indicate that plum surfaces harbour several yeast species, with excellent potential for use in biological control of brown rot of stone fruits.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.3009DOI Listing

Publication Analysis

Top Keywords

brown rot
12
fruit
9
plum surfaces
8
fruit development
8
yeasts
4
yeasts associated
4
associated plums
4
plums potential
4
potential controlling
4
controlling brown
4

Similar Publications

First Report of Causing Heart Rot Disease of in China.

Plant Dis

December 2024

Dalian Minzu University, College of Environment and Resources, Liaohe West Road No.8, Dalian Economic and Technological Developing Zone, Dalian, China, 116600;

Styphnolobium japonicum (L.) Schott, is an ornamental species of Leguminosae, widely planted as a roadside tree in north regions of China (Kite et al. 2007).

View Article and Find Full Text PDF

Root rot affects legumes such as lentil (Lens culinaris subsp. culinaris Medik.) and pea (Pisum sativum L.

View Article and Find Full Text PDF

First Report of Causing Soft Rot of Melon in China.

Plant Dis

December 2024

Ningbo Academy of Agricultural Sciences, Institute of Vegetables, Ningbo yinzhou District dehou street NO.19, Ningbo , Zhejiang, China, 315040;

In May of 2024, a stem soft rot disease in melon (Cucumis melo L.) was observed in Ningbo (29.52°N, 121.

View Article and Find Full Text PDF

Four new species of (Polyporales, Basidiomycota) from China.

MycoKeys

December 2024

State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China.

Four new wood-inhabiting fungi viz. , , , and - are proposed based on a combination of morphological features and molecular evidence. is characterized by soft coriaceous basidiomata detachable from the substrate, becoming reddish brown in KOH, subulate cystidia with an obtuse apex.

View Article and Find Full Text PDF

Eastern redbuds () are the important trees in Tennessee nurseries, known for their vibrant spring blooms, and heart-shaped foliage (Kidwell-Slak and Pooler 2018). In May 2023, container-grown eastern redbuds exhibited crown and root rot symptoms. Disease incidence was 50% of 100 plants and severity was 40% for the affected root area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!