Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering.

J Biomed Mater Res B Appl Biomater

Shanghai Key Laboratory of Orthopaedic Implant Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Published: November 2014

AI Article Synopsis

  • Porous carbon fiber felts (PCFFs) are strong and lightweight, making them suitable for orthopedic surgery, but they lack biological properties.
  • Researchers developed hydroxyapatite/chitosan/carbon porous scaffolds (HCCPs) to enhance PCFFs' biocompatibility by coating them with HA/chitosan nanohybrid layers.
  • HCCPs show improved bioactivity, promoting bone-like formation and better cell adhesion, suggesting they are promising materials for bone tissue engineering and implantation.

Article Abstract

Porous carbon fiber felts (PCFFs) have great applications in orthopedic surgery because of the strong mechanical strength, low density, high stability, and porous structure, but they are biologically inert. To improve their biological properties, we developed, for the first time, the hydroxyapatite (HA)/chitosan/carbon porous scaffolds (HCCPs). HA/chitosan nanohybrid coatings have been fabricated on PCFFs according to the following stages: (i) deposition of chitosan/calcium phosphate precursors on PCFFs; and (ii) hydrothermal transformation of the calcium phosphate precursors in chitosan matrix into HA nanocrystals. The scanning electron microscopy images indicate that PCFFs are uniformly covered with elongated HA nanoplates and chitosan, and the macropores in PCFFs still remain. Interestingly, the calcium-deficient HA crystals exist as plate-like shapes with thickness of 10-18 nm, width of 30-40 nm, and length of 80-120 nm, which are similar to the biological apatite. The HA in HCCPs is similar to the mineral of natural bone in chemical composition, crystallinity, and morphology. As compared with PCFFs, HCCPs exhibit higher in vitro bioactivity and biocompatibility because of the presence of the HA/chitosan nanohybrid coatings. HCCPs not only promote the formation of bone-like apatite in simulated body fluid, but also improve the adhesion, spreading, and proliferation of human bone marrow stromal cells. Hence, HCCPs have great potentials as scaffold materials for bone tissue engineering and implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33151DOI Listing

Publication Analysis

Top Keywords

porous scaffolds
8
bone tissue
8
tissue engineering
8
ha/chitosan nanohybrid
8
nanohybrid coatings
8
phosphate precursors
8
pcffs
6
hccps
5
hydrothermal fabrication
4
fabrication hydroxyapatite/chitosan/carbon
4

Similar Publications

Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

Article Synopsis
  • 3D scaffolds provide a more natural environment for cell studies, but synthetic hydrogels often have limited pore sizes that restrict cell movement.
  • A new method using liquid-liquid phase separation creates macroporous hydrogels with adjustable pore sizes by controlling polymerization conditions like light intensity and hydrogel composition.
  • These macroporous gels, suitable for cell encapsulation, enhance cell spreading and migration, mimicking natural extracellular matrix (ECM) environments.
View Article and Find Full Text PDF

The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average.

View Article and Find Full Text PDF

Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds.

Colloids Surf B Biointerfaces

December 2024

Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:

The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!