Despite the preferable properties of well-defined cationic peptides for small interfering RNA (siRNA) delivery, their application as siRNA carriers remains limited due to their poor binding affinity with short-chain RNAs. In this study, we investigated the feasibility of a novel strategy for circumventing this limitation, by assessing the utility of multimeric conjugates of siRNA for improving the binding affinity of siRNAs with cationic peptides and the extent of intracellular delivery. Protamine, a natural and arginine-rich peptide, was used to produce stably condensed polyelectrolyte complexes (PECs) with multimeric siRNAs (multi-siRNA) with a size of 120 nm while conventional siRNA/protamine particles are over 500 nm. The formulated multi-siRNA/protamine PECs showed greatly enhanced stability, intracellular uptake, and biocompatibility compared to conventional, monomeric (mono)-siRNA/protamine particles. With the addition of chloroquine, multi-siRNA/protamine PECs successfully inhibited target gene expression in MDA-MB-435 cells, a breast cancer cell line, even in the presence of serum protein. This study demonstrates that multi-siRNA conjugates greatly facilitate the formulation of nano-sized protamine-based carriers and significantly improve intracellular delivery in vitro compared to common siRNAs, and therefore may provide a platform for the design of peptide-based siRNA delivery systems for in vivo applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-014-0359-8 | DOI Listing |
PLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFBiochem J
January 2025
University of Dundee, Dundee, United Kingdom.
The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.
View Article and Find Full Text PDFSoc Work Health Care
January 2025
German Cancer Society, Berlin, Germany.
Introduction: Outpatient cancer counseling centers (OCCs) are important social work facilities that provide support for cancer survivors who have psychosocial and sociolegal challenges. This paper explores clinical and sociodemographic characteristics, psychosocial burden as well as access routes of clients in OCCs seeking work-related counseling.
Methods: Between May 2022 and December 2023, data were collected in 19 OCCs, using questionnaires and documentation by counselors.
Annu Rev Med
January 2025
Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus and Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; email:
Oral selective estrogen receptor degraders (SERDs) are pure estrogen receptor antagonists that have the potential to overcome common resistance mechanisms to endocrine therapy in estrogen receptor-positive breast cancer. There are currently five oral SERDs in published and ongoing clinical trials-elacestrant, camizestrant, giredestrant, imlunestrant, and amcenestrant-with more in development. They offer a reasonably well-tolerated oral therapy option with low discontinuation rates in studies.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Necmettin Erbakan University, Meram Faculty of Medicine, Department of Medical Oncology, Konya, Turkey.
The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!