We have developed explicit formulas for the excess number of counterions condensed on kinked and intersecting charged lines caused by the more intense electric field in the neighborhood of the kink or intersection. As expected, the number of additionally bound counterions is greater for more pronounced kinks, and also increases with the number of lines that intersect at a common point. We have also analyzed the electrostatic interaction potential as a function of distance between two charged lines in skewed orientation. Our finding in this case is that in a range of close distances the lines must cross a free energy barrier in order to separate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm00256c | DOI Listing |
J Leukoc Biol
January 2025
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital.
Immune cells express a variety of ion channels and transporters in the plasma membrane and intracellular organelles, responsible of the transference of charged ions across hydrophobic lipid membrane barriers. The correct regulation of ion transport ensures proper immune cell function, activation, proliferation, and cell death. Cystic fibrosis (CF) is a genetic disease in which the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel gene is defective, consequently, the CFTR protein is dysfunctional, and the chloride efflux in CF cells is markedly impaired.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic.
Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.
View Article and Find Full Text PDFACS Omega
January 2025
Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Technology of Radiology and Medical Imaging Department, Faculty of Applied Health Science Technology, October 6 University, Egypt.
Objectives: Colorectal cancer is the third most common cancer worldwide, accounting for approximately 10 % of all cancer cases. It is also the second leading cause of cancer-related deaths globally. Phloretin is a natural compound found in apples and other fruits.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:
Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!