We demonstrate a common-path tomographic diffractive microscopy technique for three-dimensional (3D) refractive-index (RI) imaging of unstained living cells. A diffraction grating is utilized to generate a reference beam that traverses a blank region of the sample in a common-path off-axis interferometry setup. Single-shot phase images captured at multiple illumination angles are used for 3D RI reconstruction based on optical diffraction tomography. The common-path configuration shows lower temporal phase fluctuations and better RI resolution than a Mach-Zehnder configuration. 3D subcellular RI distributions of live HeLa cells are quantified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.002210 | DOI Listing |
Int J Comput Assist Radiol Surg
December 2024
High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.
Purpose: In this paper, we describe an algebraic reconstruction algorithm with a total variation regularization (ART + TV) based on the Superimposed Wavefront Imaging of Diffraction-enhanced X-rays (SWIDeX) method to effectively reduce the number of projections required for differential phase-contrast CT reconstruction.
Methods: SWIDeX is a technique that uses a Laue-case Si analyzer with closely spaced scintillator to generate second derivative phase-contrast images with high contrast of a subject. When the projections obtained by this technique are reconstructed, a Laplacian phase-contrast tomographic image with higher sparsity than the original physical distribution of the subject can be obtained.
Fiber-form optics extends the high-resolution tomographic imaging capabilities of optical coherence tomography (OCT) to the inside of the human body, i.e., endoscopic OCT.
View Article and Find Full Text PDFIntensity diffraction tomography (IDT) is a label-free computational microscopy technique that infers 3D refractive index (RI) and absorption distributions of objects from intensity-only measurements. Nevertheless, the inherent coherent image formation model requires sequential intensity measurements under various plane wave illuminations, resulting in time-consuming data acquisition and low imaging speed. In this Letter, we propose differential phase contrast intensity diffraction tomography (DPC-IDT), which leverages partially coherent illumination to extend the accessible spectrum range, thereby achieving high-speed, motion-free 3D tomographic microscopy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Taizhou Hospital, Zhejiang University, Taizhou 317000, China; National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China. Electronic address:
Phys Rev Lett
September 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!