We show that the amplitude and phase information from a two-dimensional complex field can be synthesized from a phase-only optical element with micrometric resolution. The principle of the method is based on the combination of two spatially sampled phase elements by using a low-pass filter at the Fourier plane of a 4-f optical system. The proposed encoding technique was theoretically demonstrated, as well as experimentally validated with the help of a phase-only spatial light modulator for phase encoding, a conventional CMOS camera to measure the amplitude of the complex field, and a Shack-Hartmann wavefront sensor to determine its phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.001740 | DOI Listing |
Rev Sci Instrum
December 2024
OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873, USA.
Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.
View Article and Find Full Text PDFLaser Photon Rev
December 2024
Énergie, Matériaux et Télécommunications Institut National de la Recherche Scientifique Montréal H5A 1K6 Canada.
The rapid advancements in machine learning have exacerbated the interconnect bottleneck inherent in binary logic-based computing architectures. An interesting approach to tackle this problem involves increasing the information density per interconnect, i.e.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.
The computer-assisted inverse design of photonic computing, especially by leveraging artificial intelligence algorithms, offers great convenience to accelerate the speed of development and improve calculation accuracy. However, traditional thickness-based modulation methods are hindered by large volume and difficult fabrication process, making it hard to meet the data-driven requirements of flexible light modulation. Here, we propose a diffractive deep neural network (DNN) framework based on a three-layer all-dielectric phased transmitarray as hidden layers, which can perform the classification of handwritten digits.
View Article and Find Full Text PDFAn interesting security method for a multiple-image authentication scheme is proposed based on computer-generated holograms and a logistic map. First, each original image is encoded as the complex-valued hologram under the point light source model. The resulting hologram is then converted to a phase-only hologram using the Floyd-Steinberg dithering algorithm.
View Article and Find Full Text PDFComputer-generated holography (CGH) is an effective light field manipulation technique based on diffractive optics. Deep learning provides a promising way to break the trade-off between quality and speed in the phase-only hologram (POH) generation process. In this paper, a neural network called BERDNet is proposed for high-quality and high-speed POH generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!