Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction. Brevenal shows antagonistic behavior to the brevetoxins and shows beneficial attributes when administered alone. For example, in an asthmatic sheep model, brevenal has been shown to increase tracheal mucosal velocity, an attribute which has led to its development as a potential treatment for Cystic Fibrosis. The mechanism of action of brevenal is poorly understood and the exact binding site has not been elucidated. In an attempt to further understand the mechanism of action of brevenal and potentially develop a second generation drug candidate, a series of brevenal derivatives were prepared through modification of the aldehyde moiety. These derivatives include aliphatic, aromatic and heteroaromatic hydrazide derivatives. The brevenal derivatives were tested using in vitro synaptosome binding assays to determine the ability of the compounds to displace brevetoxin and brevenal from their native receptors. A sheep inhalation model was used to determine if instillation of the brevenal derivatives resulted in bronchoconstriction. Only small modifications were tolerated, with larger moieties leading to loss of affinity for the brevenal receptor and bronchoconstriction in the sheep model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012454PMC
http://dx.doi.org/10.3390/md12041839DOI Listing

Publication Analysis

Top Keywords

brevenal derivatives
12
brevenal
11
hydrazide derivatives
8
derivatives brevenal
8
sheep model
8
mechanism action
8
action brevenal
8
derivatives
6
structure activity
4
activity relationship
4

Similar Publications

Chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma, are some of the leading causes of illness and fatalities worldwide. The search for novel treatments led to the exploration of marine natural products as drug candidates to combat the debilitating effects of mucus accumulation and chronic inflammation. Previous research showed that an alga-derived compound, brevenal, could attenuate the effects of inflammatory agents, but the mechanisms by which it exerted its effects remained unclear.

View Article and Find Full Text PDF

Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction.

View Article and Find Full Text PDF

Total synthesis of (-)-brevenal: a streamlined strategy for practical synthesis of polycyclic ethers.

Chemistry

December 2011

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

We describe a streamlined strategy for the practical synthesis of trans-fused polycyclic ethers and its application to a concise total synthesis of (-)-brevenal, a new pentacyclic polyether natural product with intriguing biological activities. The B-, D-, and E-rings were constructed by TEMPO/PhI(OAc)(2)-mediated oxidative lactonization of the corresponding 1,6-diols, with minimal need for manipulation of oxygen functionalities. The B- and E-ring lactones were appropriately functionalized by Suzuki-Miyaura coupling of lactone-derived enol phosphates and subsequent stereoselective hydroboration.

View Article and Find Full Text PDF

The harmful alga, Karenia brevis, produces a suite of polyether neurotoxins, brevetoxins or PbTx, that cause marine animal mortality and neurotoxic shellfish poisoning (NSP). A characteristic of K. brevis blooms is associated airborne toxins that result in severe respiratory problems.

View Article and Find Full Text PDF

Marine brevetoxin induces IgE-independent mast cell activation.

Arch Toxicol

February 2011

Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Medical Sciences Building, 6W-33, 600 Moye Blvd, Greenville, NC 27834, USA.

Brevetoxins (PbTx) are sodium channel neurotoxins produced by the marine dinoflagellate Karenia brevis during red tide blooms. Inhalation of PbTx in normal individuals and individuals with pre-existing airways disease results in adverse airway symptoms including bronchoconstriction. In animal models of allergic inflammation, inhalation of PbTx results in a histamine H₁-mediated bronchoconstriction suggestive of mast cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!