Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection.

Analyst

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District 211189, Nanjing, Jiangsu Province, P.R China.

Published: May 2014

Bright blue luminescent graphene quantum dots (GQDs) with major graphitic structured nanocrystals and a photoluminescence (PL) quantum yield of 15.5% were synthesized and used to monitor DNA damage. The GQDs were prepared by ultraviolet irradiation without using a chemical agent. The as-prepared GQDs showed excitation-dependent PL and stable electrochemiluminescence (ECL) behaviors. Gold nanoparticles (AuNPs) were linked with a probe of single-stranded DNA (cp53 ssDNA) to form AuNPs-ssDNA. The ECL signal of the GQDs could be quenched by non-covalent binding of the AuNPs-ssDNA to the GQDs, due to the occurrence of an electrochemiluminescence resonance energy transfer between the GQDs and the AuNPs. When AuNPs-ssDNA was then hybridized with target p53 DNA to form AuNPs-dsDNA, the non-covalent interaction between the GQDs and the ds-DNA weakened and the ECL of the GQDs recovered. This engendered an ECL sensor for the detection of target p53 ssDNA, with a detection limit of 13 nM. The resultant ECL sensor could be used for DNA damage detection based on its different bonding ability to damaged target p53 ssDNA and cp53 ssDNA linked AuNPs. The presented method could be expanded to the development of other ECL biosensors, for the quantification of nucleic acids, single nucleotide polymorphisms or other aptamer-specific biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an00020jDOI Listing

Publication Analysis

Top Keywords

dna damage
12
target p53
12
electrochemiluminescence resonance
8
resonance energy
8
energy transfer
8
graphene quantum
8
quantum dots
8
gold nanoparticles
8
damage detection
8
gqds
8

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!