Two new, binuclear copper(II) hydrazone complexes have been synthesized and characterized by various physico-chemical techniques including single crystal X-ray diffraction. Interaction of these complexes with nucleotide and protein were analyzed by in vitro biochemical and electrochemical analysis. Both the complexes exhibited intercalative mode of binding with DNA. Further, gel electrophoresis assay demonstrated the ability of the complexes to cleave the supercoiled pBR322 plasmid DNA to nicked circular DNA form. Cytotoxicity of the complexes performed against a panel of cancer cell lines and a normal cell line proved that these complexes are potentially cytotoxic against the cancerous cell lines, particularly with IC50 as low as 0.7 μM against HeLa cell line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2014.03.043 | DOI Listing |
Adv Mater
January 2025
Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.
Electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an environmentally friendly route for producing the sustainable polymer monomer 2,5-furandicarboxylic acid (FDCA). Thus, precisely adjusting the synergistic adsorption among key reactive species, such as HMF and OH, on the carefully designed catalyst surface is essential for achieving satisfactory catalytic performance for HMF oxidation to FDCA as it is closely related to the adsorption strength and configuration of the reaction substrates. This kind of regulation will ultimately facilitate the improvement of HMF oxidation performance.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Pharmacy, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China. Electronic address:
Chiral isomers show different behaviours and properties in physiological activities. It is of great significance to find productive approach to realize the recognition of enantiomers, which is a key issue in biochemical and pharmaceutical fields. Nowadays, chiral identification can be successfully achieved according to the discrepancies of special signals correlated with different enantiomers of multiple electrode structures.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. Electronic address:
Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!