We describe a rapid and highly efficient method for the assembly, recombination, targeted chromosomal integration and regulatable expression of mosaic metabolic pathways by homeologous recombination in DNA repair deficient yeast cells. We have assembled and recombined 23kb pathways containing all the genes encoding enzymes for the production of flavonoids, a group of plant secondary metabolites of nutritional and agricultural value. The mosaic genes of the pathways resulted from pair-wise recombination of two nonidentical (homeologous) wild-type genes. The recombination events occurred simultaneously in the cell. Correctly assembled mosaic gene clusters could only be observed in DNA repair deficient strains. Thus, libraries of intragenic mosaic pathways were generated. Randomly isolated clones were screened for their ability to produce flavonoids such as kaempferol, phloretin and galangin. Thus, the functionality of the recombinant pathways was proven. Additionally, significant higher concentrations of metabolites such as naringenin, pinocembrin and dihydrokaempferol were detected. Further analysis also revealed the production of different aromatic compounds such as styrene, hydroxystyrene, phloretic acid and other molecules. We show that the in vivo homeologous recombination strategy can generates libraries of intragenic mosaic pathways producing a high diversity of phenylpropanoid compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2014.02.010 | DOI Listing |
DNA Repair (Amst)
December 2024
Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2024
Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan. Electronic address:
DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous.
View Article and Find Full Text PDFFront Mol Biosci
August 2023
Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
The human malaria parasite maintains the chronicity of infections through antigenic variation, a well-coordinated immune evasion mechanism. The most prominent molecular determinant of antigenic variation in this parasite includes the members of the multigene family. Homologous recombination (HR)-mediated genomic rearrangements have been implicated to play a major role in gene diversification.
View Article and Find Full Text PDFFront Plant Sci
May 2023
Department of Bioscience, Universita degli Studi di Milano, Milan, Italy.
BMC Biol
May 2023
Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
Background: Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!