Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets--hypoxia and proliferation--in canine tumors during radiation therapy.
Methods And Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3'-deoxy-3'-(18)F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeated after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests.
Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05).
Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041912 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2014.02.016 | DOI Listing |
Diagnostics (Basel)
September 2015
Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using (18)F-FDG, (64)Cu-ATSM, and (18)F-FLT before, during, and after 10 fractions of 4.
View Article and Find Full Text PDFIgaku Butsuri
March 2016
18F-FDG is a most popular radiopharmaceutical for tumor diagnosis in the world. In addition, 11C-methionine, 18F-FLT and 11C-choline have been used to compensate for drawbacks of 18F-FDG. Now, novel radiopharmaceuticals are required to estimate or predict therapeutic efficacy because we have many strategies to treat tumors.
View Article and Find Full Text PDFPhys Med Biol
July 2015
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705-2275, USA.
Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
March 2015
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin. Electronic address:
Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
April 2015
Department of Human Oncology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin.
Purpose: A phase 1 trial was completed to examine the safety and feasibility of combining bevacizumab with radiation and cisplatin in patients with locoregionally advanced squamous cell carcinoma of the head and neck (HNSCC) treated with curative intent. Additionally, we assessed the capacity of bevacizumab to induce an early tumor response as measured by a series of biological imaging studies.
Methods And Materials: All patients received a single induction dose of bevacizumab (15 mg/kg) delivered 3 weeks (±3 days) before the initiation of chemoradiation therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!