Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibroblast growth factor 21 (FGF21) is an endocrine-acting hormone that has the potential to treat metabolic diseases, such as type 2 diabetes and obesity. Development of FGF21 into a therapeutic has been hindered due to its low intrinsic bio-stability, propensity towards aggregation and its susceptibility to in vivo proteolytic degradation. In order to address these shortcomings, we've developed recombinant human FGF21 variants by strategically introducing cysteine residues via site-directed mutagenesis, and have also developed a solid-phase nickel affinity PEGylation strategy, whereby engineered, surface-exposed cysteine residues of immobilized proteins were used as a platform to efficiently and site-selectively conjugate with PEG-maleimide. The engineered PEGylated FGF21 conjugates retained its biological functions, as well as demonstrated an increase in half-life by over 211.3 min. By demonstrating the biological activity of the FGF21 analog as a prototype, we have also provided a "generalized" solid-phase approach to effectively increase serum half-life of protein therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2014.03.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!