A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A solid-phase PEGylation strategy for protein therapeutics using a potent FGF21 analog. | LitMetric

AI Article Synopsis

  • FGF21 is a hormone with potential for treating metabolic diseases like type 2 diabetes and obesity, but its use as a therapy has been limited due to instability and breakdown in the body.
  • Researchers created modified versions of FGF21 by adding cysteine residues and using a PEGylation technique to improve its stability and longevity in the bloodstream.
  • The modified FGF21 not only maintained its biological activity but also significantly increased its half-life, suggesting a new method to enhance the effectiveness of protein-based drugs.

Article Abstract

Fibroblast growth factor 21 (FGF21) is an endocrine-acting hormone that has the potential to treat metabolic diseases, such as type 2 diabetes and obesity. Development of FGF21 into a therapeutic has been hindered due to its low intrinsic bio-stability, propensity towards aggregation and its susceptibility to in vivo proteolytic degradation. In order to address these shortcomings, we've developed recombinant human FGF21 variants by strategically introducing cysteine residues via site-directed mutagenesis, and have also developed a solid-phase nickel affinity PEGylation strategy, whereby engineered, surface-exposed cysteine residues of immobilized proteins were used as a platform to efficiently and site-selectively conjugate with PEG-maleimide. The engineered PEGylated FGF21 conjugates retained its biological functions, as well as demonstrated an increase in half-life by over 211.3 min. By demonstrating the biological activity of the FGF21 analog as a prototype, we have also provided a "generalized" solid-phase approach to effectively increase serum half-life of protein therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.03.023DOI Listing

Publication Analysis

Top Keywords

pegylation strategy
8
protein therapeutics
8
fgf21 analog
8
cysteine residues
8
fgf21
6
solid-phase pegylation
4
strategy protein
4
therapeutics potent
4
potent fgf21
4
analog fibroblast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: