Background: Cell-based perfusion studies have provided great insight into fluid-sensing mechanisms, such as primary cilia in the renal and vascular systems. However, the intrinsic limitations of in vitro cell culture, such as the inability to reflect cellular organization within tissues, has distanced observed paradigms from possible clinical developments. Here we describe a protocol that applies ex vivo artery perfusion and calcium imaging to observe real-time cellular responses to fluid-shear stress.
Results: Through our ex vivo artery perfusion method, we were able to simulate physiological flow and initiate distinct fluid shear stress mechanosensory responses, as well as induced acetylcholine responses in mouse aortic tissue. The observed calcium profiles confirm results found through previous in vitro cell culture experiments. The overall procedure, including dissection, sample preparation and perfusion, takes around 3 hours to complete.
Conclusion: Through our unique method, we are able to induce laminar flow within intact mouse aortic tissue and illicit subsequent cellular responses. This method of ex vivo artery perfusion provides the opportunity to bridge the novel findings of in vitro studies with subsequent physiological models of fluid-shear stress mechanosensation in vascular tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392510 | PMC |
http://dx.doi.org/10.1186/1480-9222-16-6 | DOI Listing |
Heliyon
December 2024
Department of Medicine, Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands. Electronic address:
Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization.
View Article and Find Full Text PDFLife Sci
January 2025
Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. Electronic address:
Aims: Cerebral ischemia-reperfusion injury (CIRI) exacerbates post-stroke brain damage. We aimed to understand the role of glucose-6-phosphate dehydrogenase (G6PD) in CIRI and mitophagy.
Materials And Methods: Lentivirus and small interfering RNA were utilized to suppress G6PD in tissues and cells, leading to the establishment of in vivo and in vitro models of ischemia-reperfusion following middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/ reoxygenation (OGD/R).
Int J Comput Assist Radiol Surg
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Canada.
Purpose: During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.
Methods: X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment.
Cardiovasc Drugs Ther
January 2025
The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!