Background: Rac3 is a small GTPase multifunctional protein that regulates cell adhesion, migration, and differentiation. It has been considered as an oncogene in breast cancer; however, its role in esophageal cancer and the regulation of its stability have not been studied. F-box proteins are major subunits within the Skp1-Cullin-1-F-box (SCF) E3 ubiquitin ligases that recognize particular substrates for ubiquitination and proteasomal degradation. Recently, we have shown that SCFFBXL19 targets Rac1 and RhoA, thus regulating Rac1 and RhoA ubiquitination and degradation. Here, we demonstrate the role of FBXL19 in the regulation of Rac3 site-specific ubiquitination and stability. Expression of TGFβ1 is associated with poor prognosis of esophageal cancer. TGFβ1 reduces tumor suppressor, E-cadherin, expression in various epithelial-derived cancers. Here we investigate the role of FBXL19-mediated Rac3 degradation in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells.

Methods: FBXL19-regulated endogenous and over-expressed Rac3 stability were determined by immunoblotting and co-immunoprecipitation. Esophageal cancer cells (OE19 and OE33) were used to investigate TGFβ1-induced E-cadherin down-regulation by Immunoblotting and Immunostaining.

Results: Overexpression of FBXL19 decreased endogenous and over-expressed Rac3 expression by interacting and polyubiquitinating Rac3, while down-regulation of FBXL19 suppressed Rac3 degradation. Lysine166 within Rac3 was identified as an ubiquitination acceptor site. The FBXL19 variant with truncation at the N-terminus resulted in an increase in Rac3 degradation; however, the FBXL19 variant with truncation at the C-terminus lost its ability to interact with Rac3 and ubiquitinate Rac3 protein. Further, we found that Rac3 plays a critical role in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells. Over-expression of FBXL19 attenuated TGFβ1-induced E-cadherin down-regulation and esophageal cancer cells elongation phenotype.

Conclusions: Collectively these data unveil that FBXL19 functions as an antagonist of Rac3 by regulating its stability and regulates the TGFβ1-induced E-cadherin down-regulation. This study will provide a new potential therapeutic strategy to regulate TGFβ1 signaling, thus suppressing esophageal tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994216PMC
http://dx.doi.org/10.1186/1476-4598-13-76DOI Listing

Publication Analysis

Top Keywords

tgfβ1-induced e-cadherin
24
e-cadherin down-regulation
24
esophageal cancer
24
rac3
14
rac3 degradation
12
down-regulation esophageal
12
cancer cells
12
fbxl19
8
regulates tgfβ1-induced
8
ubiquitination degradation
8

Similar Publications

Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.

View Article and Find Full Text PDF

FAT1 knockdown enhances the CSC properties of HNSCC through p-CaMKII-mediated inactivation of the IFN pathway.

Int J Biol Sci

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.

FAT atypical cadherin 1 (), which encodes an atypical cadherin-coding protein, has a high mutation rate and is commonly regarded as a tumor suppressor gene in head and neck squamous cell carcinoma (HNSCC). Nonetheless, the potential regulatory mechanisms by which FAT1 influences the progression of HNSCC remain unresolved. In this context, we reported that FAT1 was downregulated in tumor tissues/cells compared with normal tissues/cells and that it was correlated with the clinicopathological features and prognosis of HNSCC.

View Article and Find Full Text PDF

The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis.

View Article and Find Full Text PDF

As a putative lung specific oncogene, the transducin-like enhancer of split 1 (TLE1) corepressor drives an anti-apoptotic and pro-epithelial-mesenchymal transition (EMT) gene transcriptional programs in human lung adenocarcinoma (LUAD) cells, thereby promoting anoikis resistance and tumor aggressiveness. Through its survival- and EMT-promoting gene regulatory programs, TLE1 may impact drug sensitivity and resistance in lung cancer cells. In the present study, a novel function of TLE1 was uncovered as an inhibitor of the antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) gefitinib in the human LUAD cell line A549, which exhibits moderate sensitivity to EGFR-TKI.

View Article and Find Full Text PDF

Chitosan/Alginate-Based Hydrogel Loaded With VE-Cadherin/FGF as Scaffolds for Wound Repair in Different Degrees of Skin Burns.

J Biomed Mater Res B Appl Biomater

January 2025

Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.

Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!