Naringenin attenuates CCl4 -induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats.

Clin Exp Pharmacol Physiol

Department of Biology, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, Iran.

Published: June 2014

The possible protective effects of naringenin, a naturally occurring citrus flavonone, on carbon tetrachloride (CCl4 )-induced liver injury in rats and the mechanism underlying its effects were investigated. Forty rats were divided into five groups. Rats in Groups I and II served as the normal and injured liver groups, respectively; Group III rats were treated with the standard drug silymarin as a positive control; and rats in Groups IV and V (naringenin-treated groups) were administrated 50 mg/kg, p.o., naringenin for 7 days. Liver samples were collected to evaluate mRNA and protein expression, histological changes and oxidative stress. Naringenin inhibited lipid peroxidation and reduced serum levels of hepatic enzymes induced by CCl4 . In addition, naringenin increased the liver content of reduced glutathione and the activity of anti-oxidant enzymes in rats treated with CCl4 . Naringenin attenuated liver inflammation by downregulating CCl4 -induced activation of tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) at both the protein and mRNA levels. Naringenin treatment significantly increased NF-E2-related factor 2 (Nrf2) and heme oxygenase (HO-1) expression in injured livers. In rats treated with CCl4 alone, decreases were seen in nuclear Nrf2 expression and in the mRNA levels of its target genes (e.g. HO-1, NQO1 and glutathione S-transferase alpha 3 (GST-a3)). Together, the results suggest that naringenin can protect the liver against oxidative stress, presumably by activating the nuclear translocation of Nrf2 as well as attenuating the TNF-α pathway to elicit an anti-inflammatory response in liver tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.12230DOI Listing

Publication Analysis

Top Keywords

ccl4 -induced
12
rats treated
12
naringenin
8
rats
8
rats groups
8
oxidative stress
8
treated ccl4
8
mrna levels
8
liver
7
ccl4
6

Similar Publications

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Transcriptomic Insights into the Molecular Mechanisms of Indole Analogues from the Extract and Their Therapeutic Effects on Ulcerative Colitis.

Animals (Basel)

December 2024

Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China.

Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. As a traditional Chinese medicinal insect, has been broadly utilized in clinical practice to treat wound healing. The tryptophan (Trp), tryptamine (Try), and 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (Thcc) identified from concentrated ethanol-extract liquid (PACEL) exhibit significant cell proliferation-promoting and anti-inflammatory effects in the treatment of UC, but the mechanism involved remains obscure.

View Article and Find Full Text PDF

Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear.

View Article and Find Full Text PDF

Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.

Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.

Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.

View Article and Find Full Text PDF

Regulation of macrophage polarization by metformin through inhibition of TLR4/NF-κB pathway to improve pre-eclampsia.

Placenta

January 2025

Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China. Electronic address:

Introduction: Pre-eclampsia (PE) is a pregnancy complication featuring hypertension and proteinuria. Metformin exerts clinically preventive effects on PE with an unspecified mechanism.

Methods: Placental tissues from PE patients and normal pregnant (NP) women were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!