Back electron transfer from the TiO2 electrode surface to the electrolyte is the main reason behind the low-open circuit potential (Voc) and the low-fill factor (FF) of the dye-sensitized solar cells (DSSCs). Modifications to the TiO2 electrode, fabricated using {010}-faceted TiO2 nanoparticles with six different kinds of silane, are reported to decrease the back electron transfer on the TiO2 surface. The effect of alkyl chain length of hydrocarbon silanes and fluorocarbon silanes on adsorption parameters of surface coverage and adsorption constant, interfacial resistance, and photovoltaic performances were investigated. Adsorption isotherms, impedance analysis, and photovoltaic measurements were used as the investigation techniques. The reduction of back electron transfer depended on the TiO2 surface coverage by silane, alkyl chain length, and the molecular structure of the silane. Even though Voc and FF were improved, significant reduction in short-circuit photocurrent density (Jsc) was observed after silanization because of desorption of dye during silanization. A new approach, sequential adsorption process of silane and dye, was introduced to enhance Voc and FF without lowering Jsc. Heptadecafluorodecyl trimethoxy-silane showed the highest coverage on the surface of the TiO2 and had the highest effect on the performance improvement of the DSSC, where Voc, FF, and efficiency (η) were improved by 22, 8.0, and 22%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am500666e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!