The c-MYC protooncogene expression in cholesteatoma.

Biomed Res Int

Department of Otorhinolaryngology, Head and Neck Surgery, University of Debrecen, Medical and Health Science Center, Nagyerdei Körút 98, Debrecen 4032, Hungary.

Published: May 2015

AI Article Synopsis

  • Cholesteatoma is a type of epidermoid cyst commonly found in the middle ear, characterized by hyperproliferative epithelium similar to skin cysts.
  • The study investigates the expression of the c-MYC gene, known for its role in cell growth, in 26 cholesteatoma samples, 15 skin cysts (atheromas), and 5 normal skin samples.
  • Results show that c-MYC expression is significantly higher in cholesteatoma compared to atheromas and normal skin, indicating a more aggressive growth pattern, with no notable difference between children and adults.

Article Abstract

Cholesteatoma is an epidermoid cyst, which is most frequently found in the middle ear. The matrix of cholesteatoma is histologically similar to the matrix of the epidermoid cyst of the skin (atheroma); their epithelium is characterized by hyperproliferation. The c-MYC protooncogene located on chromosome 8q24 encodes a transcription factor involved in the regulation of cell proliferation and differentiation. Previous studies have found aneuploidy of chromosome 8, copy number variation of c-MYC gene, and the presence of elevated level c-MYC protein in cholesteatoma. In this study we have compared the expression of c-MYC gene in samples taken from the matrix of 26 acquired cholesteatomas (15 children and 11 adults), 15 epidermoid cysts of the skin (atheromas; head and neck region) and 5 normal skin samples (retroauricular region) using RT-qPCR, providing the first precise measurement of the expression of c-MYC gene in cholesteatoma. We have found significantly elevated c-MYC gene expression in cholesteatoma compared to atheroma and to normal skin samples. There was no significant difference, however, in c-MYC gene expression between cholesteatoma samples of children and adults. The significant difference in c-MYC gene expression level in cholesteatoma compared to that of atheroma implies a more prominent hyperproliferative phenotype which may explain the clinical behavior typical of cholesteatoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934790PMC
http://dx.doi.org/10.1155/2014/639896DOI Listing

Publication Analysis

Top Keywords

c-myc gene
24
expression cholesteatoma
12
gene expression
12
c-myc
9
cholesteatoma
9
c-myc protooncogene
8
epidermoid cyst
8
expression c-myc
8
children adults
8
normal skin
8

Similar Publications

Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published.

View Article and Find Full Text PDF

Background: Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. However, several barriers, such as anti-tumor efficacy, drug toxicity, and safety, remain to be overcome to achieve clinical utility. Prior preclinical studies had generated encouraging data showing promises of cancer metabolism targeting drugs, although most were performed on immune-deficient murine models.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!