Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2014.38 | DOI Listing |
Int J Biol Macromol
December 2024
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.
View Article and Find Full Text PDFJ Tissue Viability
December 2024
Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Nile Valley University, Fayoum, 63518 Egypt. Electronic address:
Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
The design of multifunctional, high-performance wearable heaters utilizing textile substrates has garnered increasing attention, particularly in the development of body temperature and health monitoring devices. However, fabricating these multifunctional wearable heaters while simultaneously ensuring flexibility, air permeability, Joule heating performance, electromagnetic interference (EMI) shielding and antibacterial properties remains a significant challenge. This study utilizes phase transition lysozyme (PTL) film-mediated electroless deposition (ELD) technology to deposit silver nanoparticles (Ag NPs) on the cotton fabrics surface in a mild aqueous solution at room temperature, thereby constructing a wearable heater with long-term stability, high conductivity, and exceptional photothermal properties.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093.
In recent years, the integration of multifunctional properties into electrospun fabrics has garnered significant attention for applications in wearable devices and smart textiles. A major challenge lies in achieving a balance among intermolecular interactions, structural stability, and responsiveness to external stimuli. In this study, we address this challenge by developing intrinsically healable and photoresponsive electrospun fabrics composed of poly(vinylidene fluoride--hexafluoropropylene) (PVDF-HFP), thermoplastic polyurethane (TPU), and an azobenzene-based ionic liquid ([AzoCMIM][TFSI]).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!