Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells.

Sci Rep

1] Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University [2] College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Published: March 2014

Real-time tracking of virus invasion is crucial for understanding viral infection mechanism, which, however, needs simple and efficient labeling chemistry with improved signal-to-noise ratio. For that purpose, herein we investigated the invasion dynamics of respiratory syncytial virus (RSV) through dark-field microscopic imaging (iDFM) technique by using Au nanoparticles (AuNPs) as light scattering labels. RSV, a ubiquitous, non-segmented, pleiomorphic and negative-sense RNA virus, is an important human pathogen in infants, the elderly, and the immunocompromised. In order to label the enveloped virus of paramyxoviridae family, an efficient streptavidin (SA)-biotin binding chemistry was employed, wherein AuNPs and RSV particles modified with SA and biotin, respectively, allowing the AuNP-modified RSVs to maintain their virulence without affecting the native activities of RSV, making the long dynamic visualization successful for the RSV infections into human epidermis larynx carcinoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970125PMC
http://dx.doi.org/10.1038/srep04529DOI Listing

Publication Analysis

Top Keywords

light scattering
8
respiratory syncytial
8
syncytial virus
8
virus
5
rsv
5
real-time light
4
scattering tracking
4
tracking gold
4
gold nanoparticles-
4
nanoparticles- bioconjugated
4

Similar Publications

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).

View Article and Find Full Text PDF

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!