Temperate ecosystems, for example British heathlands and moorlands, are predicted to experience an increase in severe summer drought and wildfire frequency over the next few decades. The development of fire ignition probability models is fundamental for developing fire-danger rating systems and predicting wildfire outbreaks. This work assessed the flammability properties of the fuel complex of British moorlands as a function of their moisture content under laboratory conditions. Specifically, we aimed to develop: (1) models of the probability of fire ignition in peat/litter fuel-beds (litter of four different plant species, Sphagnum moss and peat); (2) flammability properties in terms of ignitability, sustainability, consumability and combustibility of these peat/litter fuel-beds; (3) the probability of ignition in a canopy-layer of Calluna vulgaris (the most dominant heath/moor species in Britain) as a function of its dead-fuel proportion and moisture content; (4) the efficacy of standardized smouldering and flaming ignition sources in developing sustained ignitions. For this, a series of laboratory experiments simulating the fuel structure of moor vegetation were performed. The flammability properties in peat/litter fuel-beds were influenced strongly by the fuel moisture content. There were small differences in moisture thresholds for experiencing initial flaming ignitions (35-59%), however, the threshold for sustained ignitions (i.e. spreading a fixed distance from the ignition point) varied across a much wider range (19-55%). Litter/peat fuel-beds were classified into three groups: fuel-beds with high ignitability and combustibility, fuel-beds with high levels of sustainability, and fuel-beds with low levels in all flammability descriptors. The probability of ignition in the upper Calluna-vegetation layer was influenced by both the proportion of dead fuels and their moisture content, ranging from 19% to 35% of moisture as dead fuel proportion increased. Smouldering sources were more efficient in igniting peat/litter fuel-beds but in the Calluna-vegetation layer flaming sources performed better. This work can assist in improving the predictions of fire-rating systems implemented in British moorlands, by providing better warnings based on critical moisture thresholds for various fuel types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2014.02.027DOI Listing

Publication Analysis

Top Keywords

flammability properties
16
moisture content
16
peat/litter fuel-beds
16
fire ignition
12
british moorlands
8
fuel-beds
8
probability ignition
8
moisture thresholds
8
fuel-beds high
8
calluna-vegetation layer
8

Similar Publications

Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.

View Article and Find Full Text PDF

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Comparison of Aging Performances and Mechanisms: Super-Durable Fire-Resistant "Xuan Paper" Versus Chinese Traditional Xuan Paper.

Molecules

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.

View Article and Find Full Text PDF

A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.

View Article and Find Full Text PDF

Solid-state batteries (SSBs) represent a transformative advancement in electrochemical energy storage, offering exceptional energy density, enhanced safety, and broad operational temperature ranges, making them ideal for next-generation applications. While liquid electrolytes dominate conventional lithium-ion batteries (LIBs) due to their high conductivity and efficient electrode interface wetting, their flammability and volatility pose significant safety risks, particularly in electric vehicles and portable electronics. Solid electrolytes, a cornerstone of SSB technology, offer a promising pathway to enhance LIB energy density and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!