We have previously shown that the combination of MIDGE-Th1 DNA vectors with the cationic lipid SAINT-18 increases the immune response to the encoded antigen in mice. Here, we report on experiments to further optimize and characterize this approach. We evaluated different formulations of MIDGE-Th1 vectors with SAINT-18 by assessing their influence on the transfection efficiency in cell culture and on the immune response in mice. We found that high amounts of SAINT-18 in formulations with a w/w ratio MIDGE Th1/SAINT-18 of 1:4.8 are beneficial for cell transfection in vitro. In contrast, the formulation of HBsAg-encoding MIDGE-Th1 DNA vectors with the lowest amount of SAINT-18 (w/w ratio MIDGE Th1/SAINT-18 of 1:0.5) resulted in the highest serum IgG1 and IgG2a levels after intradermal immunization of mice. Consequently, latter formulation was selected for a comparative biodistribution study in rats. Following intradermal administration of both naked and formulated MIDGE-Th1 DNA, the vectors localized primarily at the site of injection. Vector DNA levels decreased substantially over the two months duration of the study. When administered in combination with SAINT-18, the vectors were found in significantly higher amounts in draining lymph nodes in comparison to administration of naked MIDGE-Th1 DNA. We propose that the high immune responses induced by MIDGE-Th1/SAINT-18 lipoplexes are mediated by enhanced transfection of cells in vivo, resulting in stronger antigen expression and presentation. Importantly, the combination of MIDGE-Th1 vectors with SAINT-18 was well tolerated in mice and rats and is expected to be safe in human clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2014.03.048 | DOI Listing |
PLoS One
May 2016
MOLOGEN AG, Berlin, Germany.
Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L) protein of HBsAg in mice and pigs.
View Article and Find Full Text PDFVaccine
June 2014
MOLOGEN AG, Fabeckstraße 30, 14195 Berlin, Germany.
We have previously shown that the combination of MIDGE-Th1 DNA vectors with the cationic lipid SAINT-18 increases the immune response to the encoded antigen in mice. Here, we report on experiments to further optimize and characterize this approach. We evaluated different formulations of MIDGE-Th1 vectors with SAINT-18 by assessing their influence on the transfection efficiency in cell culture and on the immune response in mice.
View Article and Find Full Text PDFVaccine
May 2010
MOLOGEN AG, Fabeckstrasse 30, 14195 Berlin, Germany.
Previously, minimalistic, immunogenetically defined gene expression (MIDGE) vectors were developed as effective and sophisticated carriers for DNA vaccination. Here we evaluate the influence of dose, formulation and delivery route on the immune response after vaccination with MIDGE-Th1 vectors encoding hepatitis B virus surface antigen (HBsAg). An HBsAg-specific IgG1 and IgG2a antibody response was induced in a dose-dependent manner, whereas the IgG2a/IgG1 ratio was independent of the injected DNA dose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!