Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phylogenetic relationships of insect vectors of parasitic diseases are important for understanding the evolution of epidemiologically relevant traits, and may be useful in vector control. The sub-family Triatominae (Hemiptera:Reduviidae) includes ∼140 extant species arranged in five tribes comprised of 15 genera. The genus Triatoma is the most species-rich and contains important vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Triatoma species were grouped into complexes originally by morphology and more recently with the addition of information from molecular phylogenetics (the four-complex hypothesis); however, without a strict adherence to monophyly. To date, the validity of proposed species complexes has not been tested by statistical tests of topology. The goal of this study was to clarify the systematics of 19 Triatoma species from North and Central America. We inferred their evolutionary relatedness using two independent data sets: the complete nuclear internal transcribed spacer-2 ribosomal DNA (ITS-2 rDNA) and head morphometrics. In addition, we used the Shimodaira-Hasegawa statistical test of topology to assess the fit of the data to a set of competing systematic hypotheses (topologies). An unconstrained topology inferred from the ITS-2 data was compared to topologies constrained based on the four-complex hypothesis or one inferred from our morphometry results. The unconstrained topology represents a statistically significant better fit of the molecular data than either the four-complex or the morphometric topology. We propose an update to the composition of species complexes in the North and Central American Triatoma, based on a phylogeny inferred from ITS-2 as a first step towards updating the phylogeny of the complexes based on monophyly and statistical tests of topologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096843 | PMC |
http://dx.doi.org/10.1016/j.meegid.2014.03.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!