Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dynamics of shrinking and expanding drug-loaded microspheres were studied using a diffusion equation in spherical coordinates. A movable boundary condition was incorporated as a convection term in the original model. The resulting convective-diffusive problem was solved using Laplace transform techniques with the Bromwich integral and the residue theorem. Analytical solutions were derived for the general case of shrinking or expanding microspheres and three particular kinetics expressions: linear growth, exponential swelling and exponential shrinking. Simulations show that microspheres with fast-swelling kinetics released their therapeutic cargo at a relatively slow rate in the first two cases. Ninety-nine percent of the medication was delivered at four times the effective time constant. In line with laboratory studies using bovine serum albumin, an increase in the shrinking rate led to a fast release of the medication from its carrier. The method was applied to analyze insulin transport through spherical Ca-alginate beads. A good agreement was noted between predicted and experimental data. The theoretical effective time constant was 114.0 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2014.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!