Tandem shock waves to enhance genetic transformation of Aspergillus niger.

Ultrasonics

Departamento de Ingeniería Genética de Plantas, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36500 Irapuato, Gto., Mexico. Electronic address:

Published: August 2014

Filamentous fungi are used in several industries and in academia to produce antibiotics, metabolites, proteins and pharmaceutical compounds. The development of valuable strains usually requires the insertion of recombinant deoxyribonucleic acid; however, the protocols to transfer DNA to fungal cells are highly inefficient. Recently, underwater shock waves were successfully used to genetically transform filamentous fungi. The purpose of this research was to demonstrate that the efficiency of transformation can be improved significantly by enhancing acoustic cavitation using tandem (dual-pulse) shock waves. Results revealed that tandem pressure pulses, generated at a delay of 300 μs, increased the transformation efficiency of Aspergillus niger up to 84% in comparison with conventional (single-pulse) shock waves. This methodology may also be useful to obtain new strains required in basic research and biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2014.03.003DOI Listing

Publication Analysis

Top Keywords

shock waves
16
aspergillus niger
8
filamentous fungi
8
tandem shock
4
waves
4
waves enhance
4
enhance genetic
4
genetic transformation
4
transformation aspergillus
4
niger filamentous
4

Similar Publications

High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.

View Article and Find Full Text PDF

Collisionless shock waves, found in supernova remnants, interstellar, stellar, and planetary environments, and laboratories, are one of nature's most powerful particle accelerators. This study combines in situ satellite measurements with recent theoretical developments to establish a reinforced shock acceleration model for relativistic electrons. Our model incorporates transient structures, wave-particle interactions, and variable stellar wind conditions, operating collectively in a multiscale set of processes.

View Article and Find Full Text PDF

Activity waves in condensed excitable phases of Quincke rollers.

Soft Matter

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Calcifying Tendinopathy of the Rotator Cuff: Barbotage vs. Shock Waves: Controlled Clinical Trial Protocol (BOTCH).

Healthcare (Basel)

December 2024

Interlevel Clinical Management Unit of Physical Medicine and Rehabilitation, Reina Sofía University Hospital, Córdoba and Guadalquivir Health District, 14011 Córdoba, Spain.

: Shoulder pain is a very common health issue among adults, being 8% due to calcifying tendinopathies (CT) of the shoulder. The evolutionary process of this lesion can be classified according to Bianchi Martinoli, depending on the ultrasound appearance. In 50% of cases, with first-line treatments, they resolve spontaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!