Atomistic insights into human Cys-loop receptors by solution NMR.

Biochim Biophys Acta

Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA. Electronic address:

Published: January 2015

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177975PMC
http://dx.doi.org/10.1016/j.bbamem.2014.03.014DOI Listing

Publication Analysis

Top Keywords

cys-loop receptors
16
solution nmr
12
human cys-loop
8
ion channels
8
receptors
5
atomistic insights
4
insights human
4
cys-loop
4
receptors solution
4
nmr cys-loop
4

Similar Publications

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disease that causes progressive cognitive decline over age 65. Individuals suffering from this disease suffer memory loss, and histological examination of the brains. Okadaic acid (OA), is a potent and selective inhibitor of protein phosphatases 1 and 2A.

View Article and Find Full Text PDF

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!