This study was conducted to evaluate the effects of decreasing dietary protein and rumen-undegradable protein (RUP) on production performance, nitrogen retention, and nutrient digestibility in high-producing Holstein cows in early lactation. Twelve multiparous Holstein lactating cows (2 lactations; 50 ± 7 d in milk; 47 kg/d of milk production) were used in a Latin square design with 4 treatments and 3 replicates (cows). Treatments 1 to 4 consisted of diets containing 18, 17.2, 16.4, and 15.6% crude protein (CP), respectively, with the 18% CP diet considered the control group. Rumen-degradable protein levels were constant across the treatments (approximately 10.9% on a dry matter basis), whereas RUP was gradually decreased. All diets were calculated to supply a postruminal Lys:Met ratio of about 3:1. Dietary CP had no significant effects on milk production or milk composition. In fact, 16.4% dietary CP compared with 18% dietary CP led to higher milk production; however, this effect was not significant. Feed intake was higher for 16.4% CP than for 18% CP (25.7 vs. 24.3 kg/d). Control cows had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen and milk urea nitrogen; cows receiving 16.4 and 15.6% CP, respectively, exhibited lower concentrations of milk urea nitrogen (15.2 and 15.1 vs. 17.3 mg/dL). The control diet had a significant effect on predicted urinary N. Higher CP digestibility was recorded for 18% CP compared with the other diets. Decreasing CP and RUP to 15.6 and 4.6% of dietary dry matter, respectively, had no negative effects on milk production or composition when the amounts of Lys and Met and the Lys:Met ratio were balanced. Furthermore, decreasing CP and RUP to 16.4 and 5.4%, respectively, increased dry matter intake.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2013-6725DOI Listing

Publication Analysis

Top Keywords

milk production
20
dry matter
12
urea nitrogen
12
milk
9
effects decreasing
8
protein rumen-undegradable
8
rumen-undegradable protein
8
production composition
8
cows early
8
early lactation
8

Similar Publications

The and isomers of conjugated linoleic acid (CLA) are associated with anticancer and lipolytic effects in tissues, respectively, but in lactating cows, the latter isomer reduces the milk fat concentration, a detrimental aspect for the dairy industry, as it reduces the yield of milk derivatives. Therefore, the objective of this study was to evaluate the effect of providing protected palmitic acid (PA) to grazing lactating Holstein cows supplemented with soybean oil as a source of conjugated linoleic acid, on milk production, fat concentration and mitigation of milk fat depression. Nine multiparous Holstein cows were used, distributed in three groups of three cows each, with initial means of days in milk, live weight, milk production, and number of calvings: 124 ± 16 days, 494 ± 53 kg, 20.

View Article and Find Full Text PDF

A method involving gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (GC-Q/Orbitrap HRMS) with the QuEChERS method was developed to analyze 36 non-phthalate plasticizers in milk powder products. The samples were dissolved in 20% NaCl, extracted with acetonitrile, and purified using silica, PSA, and C. The results showed the excellent linear relationship of the calibration curves of 36 non-phthalate plasticizers in the range of 10-1000 ng mL, with correlation coefficients () not less than 0.

View Article and Find Full Text PDF

This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine.

View Article and Find Full Text PDF

An Au-Ag@Au fiber surface plasmon resonance sensor for highly sensitive detection of fluoroquinolone residues.

Analyst

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.

Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.

View Article and Find Full Text PDF

A resource of longitudinal RNA-seq data of Holstein cow rumen, duodenum, and colon epithelial cells during the lactation cycle.

BMC Genom Data

January 2025

Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.

As one of the most important ruminant breeds, Holstein cattle supply a significant portion of milk and dairy for human consumption, playing a crucial role in agribusiness. The goal of our study was to examine the molecular adaptation of gastrointestinal tissues that facilitate milk synthesis in dairy cattle. DATA DESCRIPTION: We performed RNA-seq analysis on epithelial cells from the rumen, duodenum, and colon at eight different time points: Days 3, 14, 28, 45, 120, 220, and 305 in milk, as well as the dry period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!