The experimental circular dichroism (CD) spectra of uridine and NH2-uridine that were different in the intensity and shape were studied in the light of the ChiraSac method. The theoretical CD spectra at several different conformations using the symmetry-adapted-cluster configuration-interaction (SAC-CI) theory largely depended on the conformational angle, but those of the anti-conformers and the Boltzmann average reproduced the experimentally obtained CD spectra of both uridine and NH2-uridine. The differences in the CD spectra between the two uridine derivatives were analyzed by using the angle θ between the electric transition dipole moment (ETDM) and the magnetic transition dipole moment (MTDM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp501906u | DOI Listing |
Int J Mol Sci
October 2024
Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland.
In this work, the HR MAS NMR (high-resolution magic-angle spinning nuclear magnetic resonance) spectroscopy technique was combined with standard histological examinations to investigate the metabolic features of high-grade serous ovarian cancer (HGSOC) with a special focus on the relation between a metabolic profile and a cancer cell fraction. The studied group consisted of 44 patients with HGSOC and 18 patients with benign ovarian tumors. Normal ovarian tissue was also excised from 13 control patients.
View Article and Find Full Text PDFCell
September 2024
Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA. Electronic address:
GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
October 2024
Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ, USA.
Rationale: This study focuses on the advantage of using the novel electron-activated dissociation (EAD) technology on the QTOF system for structural elucidation of conjugation metabolites. In drug metabolite identification, conceptual "boxes" are generally used to represent potential sites of modifications, which are proposed based on MS/MS data. Electron-activated dissociation (EAD) provides unique fragmentation patterns, potentially allowing for more precise localization of the metabolic modification sites compared to CID, particularly for conjugations.
View Article and Find Full Text PDFLife (Basel)
March 2024
Applied Physics and Naval Technology Department, Universidad Politécnica de Cartagena, C/Doctor Fleming, s/n., 30202 Cartagena, Spain.
The RNA world hypothesis suggests that early cellular ancestors relied solely on RNA molecules for both genetic information storage and cellular functions. RNA, composed of four nucleosides-adenosine, guanosine, cytidine, and uridine-forms the basis of this theory. These nucleosides consist of purine nucleobases, adenine and guanine, and pyrimidine nucleobases, cytosine and uracil, bonded to ribose sugar.
View Article and Find Full Text PDFBrain Commun
March 2024
Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lafora disease is a fatal teenage-onset progressive myoclonus epilepsy and neurodegenerative disease associated with polyglucosan bodies. Polyglucosans are long-branched and as a result precipitation- and aggregation-prone glycogen. In mouse models, downregulation of glycogen synthase, the enzyme that elongates glycogen branches, prevents polyglucosan formation and rescues Lafora disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!