The actions of three isozymes of human pancreatic alpha-amylase (HPA) on phenyl alpha-maltopentaoside, phenyl alpha-maltotetraoside, and their derivatives which have an iodo, an amino, or a carboxyl group at their first or penultimate glucopyranosyl residue from the non-reducing-end were examined. The results revealed that there was no difference in the actions of the three isozymes on the modified substrates and suggested the presence of five subsites (S3, S2, S1, S1', and S2') and a hydrophobic amino acid residue at subsite S3 in the active site of HPA. As compared with the action of human salivary alpha-amylase (HSA) on the same substrates, HPA had a tendency to release more phenyl alpha-glucoside from every substrate; however, an iodo, an amino, and a carboxyl group of the substrates had the same effects on the binding modes of the substrates to the active site of HPA as seen in the case of the salivary enzyme. This result indicates that the three-dimensional structures of the active sites of both alpha-amylases are quite similar except for some minor changes at subsites S3 and S2'.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122529DOI Listing

Publication Analysis

Top Keywords

human salivary
8
actions three
8
three isozymes
8
iodo amino
8
amino carboxyl
8
carboxyl group
8
active site
8
site hpa
8
comparison modes
4
modes actions
4

Similar Publications

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).

Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.

View Article and Find Full Text PDF

Adverse early-life experiences alter the regulation of major stress systems such as the hypothalamic-pituitary-adrenal (HPA) axis. Low early-life maternal care (MC) has repeatedly been related to blunted cortisol stress responses. Likewise, an acutely increased awareness of mortality (mortality salience [MS]) also has been shown to blunt cortisol responses.

View Article and Find Full Text PDF

Introduction: Hospitalisation represents an opportunity to identify and treat e-cigarette use among adolescents and young adults (AYAs). Knowledge on how to provide this care is lacking. We aim to fill this gap by developing an e-cigarette use intervention and evaluating preliminary efficacy and implementation outcomes among hospitalised AYAs.

View Article and Find Full Text PDF

Multimodal Measurement of Pubertal Development: Stage, Timing, Tempo, and Hormones.

Child Dev

January 2025

Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.

Using data from the Human Connectome Project in Development (N = 1304; ages 5-21 years; 50% male; 59% White, 17% Hispanic, 13% Black, 9% Asian), multiple measures (self-report, salivary hormones) and research designs (longitudinal, cross-sectional) were used to characterize age-related changes and sex differences in pubertal development. Both sexes exhibit a sigmoid trajectory of pubertal development; females show earlier pubertal timing and increased tempo ~9-13 years, while males show greater tempo ~14-18 years. All hormones increased with age, with sex differences in testosterone and DHEA levels and in testosterone rates of change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!