Surface behavior of sphingomyelins with very long chain polyunsaturated fatty acids and effects of their conversion to ceramides.

Langmuir

Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , 8000 Bahía Blanca, Argentina.

Published: April 2014

Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la500485xDOI Listing

Publication Analysis

Top Keywords

long chain
8
chain polyunsaturated
8
polyunsaturated fatty
8
fatty acids
8
sperm head
8
completion acrosomal
8
acrosomal reaction
8
cer conversion
8
cer
7
sms
6

Similar Publications

Effect of plasma free fatty acids on lung function in male COPD patients.

Sci Rep

January 2025

Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.

View Article and Find Full Text PDF

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Follicular ovarian cysts (FOCs) are prevalent reproductive disorders in both humans and animals, especially in livestock, where they cause economic losses by reducing fertility and productivity. FOCs are marked by a dominant follicle that fails to ovulate, disrupting the estrous cycle and reproductive efficiency. Previous studies indicate that the follicular fluid (FF) in cystic ovaries shows oxidative imbalance, affecting oocyte quality by altering glutathione peroxidase (GPX1) and selenium pathways.

View Article and Find Full Text PDF

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

Constructing an Organic-Inorganic Hybrid Solid-Electrolyte Interface In Situ via an Organo-Polysulfide Electrolyte Additive for Lithium-Sulfur Batteries.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, China.

Lithium (Li) metal's extremely high specific energy and low potential make it critical for high-performance batteries. However, uncontrolled dendrite growth and an unstable solid-electrolyte interphase (SEI) during repeated cycling still seriously hinder its practical application in Li metal batteries. Herein, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer using two kinds of organo-polysulfides with different sulfur chain lengths [bis(3-(triethoxysilyl)propyl)disulfide (Si-O-2S) and bis(3-(triethoxysilyl)propyl)tetrasulfide (Si-O-4S)] as the additives in the electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!