Update on role of direct renin inhibitor in diabetic kidney disease.

Ren Fail

Division of Nephrology, Lehigh Valley Health Network , Allentown, PA , USA .

Published: July 2014

Background: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of DKD with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) being the mainstay of treatment. Systemic RAAS activity has been implicated in the pathogenesis of DKD, but lately interest has shifted to intrarenal RAAS effect. With the discovery of the (pro)renin receptor and ACE independent pathways of angiotensin II production, our understanding of role of renin in end organ damage has improved significantly.

Summary: We summarize our current understanding of ACE dependent and independent pathways in the development of DKD and the preclinical models demonstrating renal effects of direct renin inhibitors (DRIs). We then review clinical studies and trials performed so far evaluating the efficacy of aliskiren on renal outcomes and safety in DKD.

Key Message: At present, there is little evidence for renal benefit of aliskiren in DKD beyond that offered by ACEIs or ARBs. Combining aliskiren with ACEI or ARB in DKD did not significantly improve renal outcomes in comparison with ACEI or ARB monotherapy in clinical trials. Slightly more adverse events including hyperkalemia, acute kidney injury and hypotension were observed in the combination therapy as compared to the monotherapy. Thus, current evidence suggests that aliskiren, because of its antihypertensive and antiproteinuric effects, maybe used as monotherapy in DKD and considered an equivalent alternative to ACEIs or ARBs. Careful monitoring for renal adverse effects would allow safe clinical use of DRI.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0886022X.2014.900425DOI Listing

Publication Analysis

Top Keywords

direct renin
8
diabetic kidney
8
kidney disease
8
development dkd
8
independent pathways
8
renal outcomes
8
aceis arbs
8
acei arb
8
dkd
7
renal
6

Similar Publications

Background: Arterial hypertension and left ventricular hypertrophy and remodeling are independent cardiovascular risk factors in patients with Cushing's syndrome. Changes in the renin-angiotensin system and in the mineralocorticoid axis activity could be involved as potential mechanisms in their pathogenesis, in addition to cortisol excess.

Methods: In this ancillary study of our previous study prospectively investigating patients with ACTH-dependent Cushing's syndrome by cardiac magnetic resonance imaging (NCT02202902), 11 patients without any interfering medication were cross-sectionally compared to 20 control subjects matched for age, sex and body mass index.

View Article and Find Full Text PDF

Direct Vascular Effects of Angiotensin II (A Systematic Short Review).

Int J Mol Sci

December 2024

Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.

The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.

View Article and Find Full Text PDF

Aims: Guidelines recommend immediate initiation of all four class I guideline-directed medical therapies, renin-angiotensin system inhibitors (RASI) or angiotensin receptor-neprilysin inhibitors (ARNI), beta-blockers, mineralocorticoid receptor antagonists (MRA) and sodium-glucose cotransporter 2 inhibitors (SGLT2i) following the diagnosis of heart failure (HF) with reduced ejection fraction (HFrEF). The extent to which this occurs in new-onset HFrEF is unclear. We assessed guideline-recommended therapies during the first year following a HFrEF diagnosis.

View Article and Find Full Text PDF

In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels).

View Article and Find Full Text PDF

Heart failure (HF) represents a significant global health challenge, characterized by high morbidity and mortality rates, decreased quality of life and a significant financial and economic burden. The prevalence of HF continues to rise, driven by an ageing population and an increasing burden of comorbidities such as hypertension, diabetes and obesity. Understanding the complex pathophysiology and developing effective treatments are critical for improving patient outcomes, yet the range of effective, life-prolonging medication classes has remained mostly constant in the last few decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!