In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection.

Anal Chem

Departamento de Química Analítica y Alimentaria, Área de Química Analítica, Facultad de Química, Universidad de Vigo , Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain.

Published: May 2014

A new fluorescent assay based on in situ ultrasound-assisted synthesis of carbon dots (CDs) as optical nanoprobes for the detection of methylmercury has been developed. Application of high-intensity sonication allows simultaneous performance of the synthesis of fluorescent CDs within the analytical time scale and the selective recognition of the target analyte. Microvolume fluorospectrometry is applied for measurement of the fluorescence quenching caused by methylmercury. The assay uses low amounts of organic precursors (fructose, poly(ethylene glycol), and ethanol) and can be accomplished within 1 min. A detection limit of 5.9 nM methylmercury and a repeatability expressed as a relative standard deviation of 2.2% (N = 7) were obtained. CDs displayed a narrow size distribution with an average size of 2.5 nm as determined by electron transmission microscopy. To study the quenching mechanism, fluorescence, atomic absorption spectrometry, and Fourier transform infrared spectrometry were applied. Hydrophobicity of methylmercury and its ability to facilitate a nonradiative electron/hole recombination are suggested as the basis of the recognition event. A simple and green assay is achieved for quick detection of methylmercury without the use of tedious sample preparation procedures or complex and expensive instrumentation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac500517hDOI Listing

Publication Analysis

Top Keywords

carbon dots
8
detection methylmercury
8
methylmercury
6
situ building
4
building nanoprobe
4
nanoprobe based
4
based fluorescent
4
fluorescent carbon
4
dots methylmercury
4
detection
4

Similar Publications

A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.

View Article and Find Full Text PDF

Neuroinflammation plays an indispensable role in neural damages after ICH, responsible for the induced high mortality and poor prognosis. NLRP3 inflammasome, which is known mediated by ROS, has been widely documented to aggravate brain injuries. Therefore, suppressing neural injuries by ROS/NLRP3 pathway may be beneficial in treating ICH.

View Article and Find Full Text PDF

Light-up lipid droplets dynamic behaviors using rationally designed carbon dots.

Talanta

January 2025

Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:

Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.

View Article and Find Full Text PDF

Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing.

Biomaterials

January 2025

Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China. Electronic address:

Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn-doped carbon dots (MnCDs@OMBs) to enhance SDT and disrupt biofilms.

View Article and Find Full Text PDF

In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!