Mammary-specific genetic programs are activated during pregnancy by the common transcription factor signal transducer and activator of transcription (STAT) 5. More than one third of these genes carry nuclear factor I/B (NFIB) binding motifs that coincide with STAT5 in vivo binding, suggesting functional synergy between these two transcription factors. The role of NFIB in this governance was investigated in mice from which Nfib had been inactivated in mammary stem cells or in differentiating alveolar epithelium. Although NFIB was not required for alveolar expansion, the combined absence of NFIB and STAT5 prevented the formation of functional alveoli. NFIB controlled the expression of mammary-specific and STAT5-regulated genes and chromatin immunoprecipitation-sequencing established STAT5 and NFIB binding at composite regulatory elements containing histone H3 lysine dimethylation enhancer marks and progesterone receptor binding. By integrating previously published chromatin immunoprecipitation-sequencing data sets, the presence of NFIB-STAT5 modules in other cell types was investigated. Notably, genomic sites bound by NFIB in hair follicle stem cells were also occupied by STAT5 in mammary epithelium and coincided with enhancer marks. Many of these genes were under NFIB control in both hair follicle stem cells and mammary alveolar epithelium. We propose that NFIB-STAT5 modules, possibly in conjunction with other transcription factors, control cell-specific genetic programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004779 | PMC |
http://dx.doi.org/10.1210/me.2012-1387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!