Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformations or lethality. Conditional gene knockdown has emerged as a compelling alternative to gene knockout, an approach well-established in vitro but that remains challenging in vivo, especially in the adult brain. Here, we report a method for conditional and cell-specific gene knockdown in the mouse brain in vivo that combines Cre-mediated RNA interference (RNAi) with classical and lentivirus-mediated transgenesis. The method is based on the inducible expression of a silencing short hairpin RNA (shRNA) introduced in mice by lentivirus-mediated transgenesis, and on its activation by excision of a floxed stop EGFP reporter with an inducible Cre recombinase expressed in astrocytes or in neurons. This dual system should be of broad utility for comparative studies of gene functions in these two cell types in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958736PMC
http://dx.doi.org/10.3389/fncel.2014.00062DOI Listing

Publication Analysis

Top Keywords

gene knockdown
12
gene
8
astrocytes neurons
8
gene knockout
8
gene functions
8
lentivirus-mediated transgenesis
8
vivo
5
heritable inducible
4
inducible gene
4
knockdown astrocytes
4

Similar Publications

Studying the Role of HOX Genes in Thrombocyte Development.

Methods Mol Biol

January 2025

Department of Biological Sciences, University of North Texas, Denton, TX, USA.

In our laboratory, we study thrombopoiesis and hemostasis using zebrafish as a model organism to unravel the mechanisms of differentiation and development of thrombocytes. We have shown in our earlier work that thrombocytes are functional equivalents of platelets and have transcriptional machinery similar to megakaryocytes. We recently found evidence that hox genes play a role in their development.

View Article and Find Full Text PDF

Supervillin (SVIL), the biggest member of the villin/gelsolin superfamily, has recently been reported to promote the metastasis of hepatocellular carcinoma by stimulating epithelial-mesenchymal transition (EMT). However, little is known about the roles of SVIL in the migration of colorectal cancer cells. Here, we investigated the effects of SVIL on the migration of cisplatin-resistant colorectal cancer cells.

View Article and Find Full Text PDF

This study aims to investigate the effect and mechanism of cyclosporine A (CsA) on paclitaxel-resistant prostate cancer cells. Paclitaxel-resistant prostate cancer cell lines were established by gradual increment method. The proliferation of cells was tested using MTT and colony formation assay.

View Article and Find Full Text PDF

Knockdown of HOXD13 in Oral Squamous Cell Carcinoma Inhibited its Proliferation, Migration, and Influenced Fatty Acid Metabolism.

J Cancer

January 2025

Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Hebei Technology Innovation Center of Oral Health, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China.

HOXD13, a member of the homeobox gene family, plays a critical role in developmental processes and has been implicated in various malignancies, including pancreatic cancer and glioma. However, its role in oral squamous cell carcinoma (OSCC) remains poorly understood. This study aimed to elucidate the potential of HOXD13 as a diagnostic biomarker and therapeutic target for OSCC.

View Article and Find Full Text PDF

Deciphering the Prognostic Landscape of Esophageal Adenocarcinoma: A PANoptosis-Related Gene Signature.

J Cancer

January 2025

Department of Pathology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.

Esophageal adenocarcinoma (EAC) remains a challenging malignancy with low survival rates despite advances in treatment. Understanding the molecular mechanisms and identifying reliable prognostic markers are crucial for improving clinical outcomes. We conducted a comprehensive bioinformatics analysis utilizing TCGA, GTEx, and GEO datasets to identify PANoptosis-related genes (PRGs) associated with EAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!