Background: Nutritional supplements based on the amino acid L-arginine have been hypothesized to improve exercise performance by increasing levels of insulin and growth hormone (GH). Changes of these parameters in response to L-arginine supplementation may clarify the mechanisms underlying its putative physiological effects on physical performance.
Objective: The aim of the study was to evaluate the effect of L-arginine supplementation on serum insulin, GH, Growth Factor Insulin-like (IGF-1), and cortisol in response to exercise. Exercise performance was also evaluated.
Design: Fifteen trained runners were divided into groups supplemented with 6 g of L-arginine (ARG) or placebo (PLA). Blood samples were collected before supplementation (T0), immediately after the first exercise session (T1), after the second exercise session (T2), and after 20 min of rest (T3). The exercise consisted of two bouts of 5 km time-trial running test.
Results: There was a significant increase in serum GH (T0: 3.28±0.95 vs. 3.21±0.5 ng/mL; T1: 4.35±0.23 vs. 4.17±0.13 ng/mL; T2: 4.22±0.25 vs. 4.17±0.09 ng/mL; T3: 4.14±0.29 vs. 4.13±0.18 ng/mL) and cortisol (T0: 198.71±53.77 vs. 207.57±69.51 nmol/L; T1: 458.16±116.12 vs. 433.26±101.77 nmol/L; T2: 454.61±125.21 vs. 431.88±74.82 nmol/L; T3: 311.14±102.91 vs. 362.26±110.42 nmol/L) after T1, T2, and T3, with no significant difference between the ARG and PLA groups, respectively. There was also no significant difference observed in the variables of IGF-1, insulin, and total running time between the ARG and PLA groups.
Conclusions: The supplementation of L-arginine did not appear to stimulate the production of insulin, GH, and IGF-1 and, thus, provided no benefit in hormonal response or exercise performance in trained runners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967014 | PMC |
http://dx.doi.org/10.3402/fnr.v58.22569 | DOI Listing |
Poult Sci
January 2025
Feedworks Pty Ltd, Romsey, VIC, Australia.
The effectiveness of guanidinoacetic acid (GAA) in reduced protein (RP) diets on performance and gut health of broilers under heat stress is largely unknown. A 35-d experiment was conducted using four dietary treatments: a standard protein diet (SP, 22.1 and 20.
View Article and Find Full Text PDFBJOG
January 2025
Women's, Children's and Adolescents' Health Program, Burnet Institute, Melbourne, Australia.
Background: Evidence suggests L-arginine may be effective at reducing pre-eclampsia and related outcomes. However, whether L-arginine can prevent or only treat pre-eclampsia, and thus the target population and timing of initiation, remains unknown.
Objectives: To evaluate the effects of L-arginine and L-citrulline (precursor of L-arginine) on the prevention and treatment of pre-eclampsia.
Poult Sci
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China; Department of Biology and Agriculture, Zunyi Normal College, Ping`an Avenue, Hong Huagang District, Zunyi 563006, China.
Preslaughter stress induced a negative energy balance of broilers, resulted in an accelerated glycolysis and finally led to an inferior meat quality. The present study aimed to investigate the effects of creatine monohydrate (CMH) supplementation on muscle energy storage, antioxidant capacity, the glycolysis of postmortem muscle and the metabolite profiles in muscle of broilers subjected to preslaughter transport. Two hundred and forty broilers were chosen and randomly allocated into three treatments (group A, group B and group C), comprising 8 replicates (10 broilers each replicate).
View Article and Find Full Text PDFAnimals (Basel)
December 2024
CJ Europe GmbH, Amino Acid Application Center, Unterschweinstiege 2-14, 60549 Frankfurt am Main, Germany.
Two 35-day trials were conducted to determine the arginine (Arg) requirement of broiler chickens and the Arg and energy-sparing effects of guanidinoacetic acid (GAA). In experiment 1, a low-Arg diet (basal diet) was supplemented with increasing levels (0.06-0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Perfluorooctanoic acid (PFOA) is a persistent pollutant that has gained worldwide attention, owing to its widespread presence in the environment. Previous studies have reported that PFOA upregulates lipid metabolism and is associated with liver injury in humans. However, when the fatty acid degradation pathway is activated, lipid accumulation still occurs, suggesting the presence of unknown pathways and mechanisms that remain to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!